Normalized defining polynomial
\( x^{16} - 6 x^{15} + 37 x^{14} - 102 x^{13} + 317 x^{12} - 448 x^{11} + 1072 x^{10} - 1332 x^{9} + 4065 x^{8} - 2894 x^{7} + 7545 x^{6} - 1626 x^{5} + 15476 x^{4} + 998 x^{3} + 29185 x^{2} + 14710 x + 37289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79443753352820378013007872=2^{36}\cdot 3^{2}\cdot 383\cdot 761^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 383, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} + \frac{7}{23} a^{13} + \frac{3}{23} a^{12} + \frac{5}{23} a^{11} + \frac{7}{23} a^{10} + \frac{7}{23} a^{9} - \frac{11}{23} a^{8} - \frac{4}{23} a^{7} + \frac{6}{23} a^{6} + \frac{7}{23} a^{5} + \frac{9}{23} a^{4} + \frac{8}{23} a^{3} + \frac{11}{23} a^{2} + \frac{3}{23} a - \frac{4}{23}$, $\frac{1}{11626675549297340164319461340376821} a^{15} - \frac{183092667306250856133313249935829}{11626675549297340164319461340376821} a^{14} - \frac{1734999368913940659715933602451901}{11626675549297340164319461340376821} a^{13} + \frac{3213826373965896036692375264030617}{11626675549297340164319461340376821} a^{12} - \frac{691832871211262379407074161798439}{11626675549297340164319461340376821} a^{11} - \frac{5759514232538990394689802122523771}{11626675549297340164319461340376821} a^{10} - \frac{1580074750769934109849147384697302}{11626675549297340164319461340376821} a^{9} + \frac{1303582673986280835442898779658609}{11626675549297340164319461340376821} a^{8} + \frac{3755228742262013936507963251499208}{11626675549297340164319461340376821} a^{7} - \frac{830355132490620649913459051748828}{11626675549297340164319461340376821} a^{6} - \frac{1127439077694418938952660082615516}{11626675549297340164319461340376821} a^{5} - \frac{1948906976360226796176151285707899}{11626675549297340164319461340376821} a^{4} - \frac{3927106445871864308509693210049237}{11626675549297340164319461340376821} a^{3} - \frac{1135834545684018879095323387261474}{11626675549297340164319461340376821} a^{2} - \frac{4152837137284852169155905330558559}{11626675549297340164319461340376821} a - \frac{4059317118779176629139830330403717}{11626675549297340164319461340376821}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1271827.27658 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 147456 |
| The 148 conjugacy class representatives for t16n1887 are not computed |
| Character table for t16n1887 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 8.4.2372079616.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.12.30.108 | $x^{12} + 10 x^{10} - 3 x^{8} - 28 x^{6} - 21 x^{4} - 14 x^{2} - 17$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 383 | Data not computed | ||||||
| 761 | Data not computed | ||||||