Normalized defining polynomial
\( x^{16} - 6 x^{15} - 16 x^{14} - 530 x^{13} - 1072 x^{12} + 16860 x^{11} + 1126568 x^{10} + 8435040 x^{9} + 74703292 x^{8} + 340919290 x^{7} + 1738428696 x^{6} + 2031622908 x^{5} + 15687125679 x^{4} - 34355491586 x^{3} + 116964971452 x^{2} - 231648299712 x + 240631555264 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(794435265691380646985793918947192534284081=67^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $415.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{268} a^{10} - \frac{4}{67} a^{9} - \frac{29}{268} a^{8} - \frac{21}{134} a^{7} - \frac{7}{67} a^{6} + \frac{4}{67} a^{5} - \frac{49}{268} a^{4} - \frac{6}{67} a^{3} - \frac{43}{268} a^{2} + \frac{61}{134} a + \frac{33}{67}$, $\frac{1}{268} a^{11} - \frac{17}{268} a^{9} + \frac{15}{134} a^{8} - \frac{15}{134} a^{7} - \frac{15}{134} a^{6} - \frac{61}{268} a^{5} - \frac{1}{67} a^{4} - \frac{25}{268} a^{3} - \frac{15}{134} a^{2} + \frac{37}{134} a - \frac{8}{67}$, $\frac{1}{1072} a^{12} + \frac{93}{1072} a^{9} - \frac{27}{536} a^{8} - \frac{13}{67} a^{7} + \frac{267}{1072} a^{6} - \frac{1}{4} a^{5} - \frac{47}{268} a^{4} - \frac{505}{1072} a^{3} + \frac{241}{536} a^{2} + \frac{75}{268} a + \frac{23}{67}$, $\frac{1}{1072} a^{13} + \frac{1}{1072} a^{10} + \frac{39}{536} a^{9} + \frac{3}{67} a^{8} - \frac{157}{1072} a^{7} + \frac{41}{268} a^{6} - \frac{13}{268} a^{5} + \frac{251}{1072} a^{4} - \frac{129}{536} a^{3} - \frac{75}{268} a^{2} + \frac{25}{67} a - \frac{22}{67}$, $\frac{1}{13543788657672080} a^{14} - \frac{507627061847}{1354378865767208} a^{13} + \frac{418853574971}{13543788657672080} a^{12} + \frac{23649822441881}{13543788657672080} a^{11} - \frac{100755474691}{3385947164418020} a^{10} - \frac{943609721059217}{13543788657672080} a^{9} + \frac{1260703649242933}{13543788657672080} a^{8} + \frac{159520280140237}{6771894328836040} a^{7} - \frac{3205017262186563}{13543788657672080} a^{6} + \frac{121625486910835}{2708757731534416} a^{5} + \frac{83705131091089}{677189432883604} a^{4} - \frac{3618346695115367}{13543788657672080} a^{3} - \frac{2078325943354439}{6771894328836040} a^{2} + \frac{1279130737711053}{3385947164418020} a - \frac{135021479148627}{846486791104505}$, $\frac{1}{12210961902381195002505292334696087783888514896044473154240} a^{15} - \frac{66712157677867980294552829002736795731821}{6105480951190597501252646167348043891944257448022236577120} a^{14} + \frac{458512818848609780130359895633119677809463699901092707}{1526370237797649375313161541837010972986064362005559144280} a^{13} - \frac{2014896016960920028218182933005574729586365776098727723}{6105480951190597501252646167348043891944257448022236577120} a^{12} - \frac{228380139622203613839414383120356636151341910597559791}{763185118898824687656580770918505486493032181002779572140} a^{11} + \frac{2392845127790247955475724412367648732144188310282499339}{3052740475595298750626323083674021945972128724011118288560} a^{10} - \frac{119637908741631769005897810539036899429242794517938948087}{3052740475595298750626323083674021945972128724011118288560} a^{9} + \frac{14569737065493842716515570035609108856392431558676026863}{763185118898824687656580770918505486493032181002779572140} a^{8} + \frac{571997403522350879983529313694541896172402796832003272371}{3052740475595298750626323083674021945972128724011118288560} a^{7} + \frac{1167449227220652901098576533256173787934060097840056131183}{6105480951190597501252646167348043891944257448022236577120} a^{6} + \frac{40597856244704290554724485323902549067941134109357614425}{305274047559529875062632308367402194597212872401111828856} a^{5} - \frac{293821465624818585695091125128485885342300291515449250593}{3052740475595298750626323083674021945972128724011118288560} a^{4} - \frac{4793258850916267625081615774503015332410737691325472891389}{12210961902381195002505292334696087783888514896044473154240} a^{3} + \frac{2057904558467756957510186901819580586754119354860647597209}{6105480951190597501252646167348043891944257448022236577120} a^{2} - \frac{43886637111177591630520641037122298373926261789435463459}{3052740475595298750626323083674021945972128724011118288560} a - \frac{292495764066132499849375002308106549904274702670882813851}{763185118898824687656580770918505486493032181002779572140}$
Class group and class number
$C_{2}\times C_{8}\times C_{48}$, which has order $768$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2440693464320 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |