Normalized defining polynomial
\( x^{16} - 4 x^{15} + 13 x^{14} - 28 x^{13} + 297 x^{12} - 839 x^{11} + 2537 x^{10} - 1192 x^{9} + 12753 x^{8} - 34044 x^{7} + 192731 x^{6} - 96505 x^{5} + 999786 x^{4} - 881433 x^{3} + 2699541 x^{2} - 479196 x + 5517801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7937726777341695855516080761=13^{14}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{3} a^{10} - \frac{1}{9} a^{9} + \frac{4}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{2}{9} a^{10} - \frac{4}{9} a^{9} - \frac{4}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{2349} a^{14} + \frac{71}{2349} a^{13} + \frac{118}{2349} a^{12} - \frac{313}{2349} a^{11} - \frac{157}{783} a^{10} - \frac{407}{2349} a^{9} - \frac{322}{2349} a^{8} + \frac{497}{2349} a^{7} + \frac{146}{783} a^{6} + \frac{385}{783} a^{5} + \frac{608}{2349} a^{4} + \frac{773}{2349} a^{3} + \frac{50}{261} a^{2} - \frac{53}{261} a$, $\frac{1}{72144187884824724824739048651571716307298787} a^{15} - \frac{1406168239397618815998117288072278999977}{72144187884824724824739048651571716307298787} a^{14} - \frac{3444805565323590901717529859465439695397925}{72144187884824724824739048651571716307298787} a^{13} + \frac{2626631864659537703164739715419447007210515}{72144187884824724824739048651571716307298787} a^{12} - \frac{724879265322025364289164184657162201537751}{24048062628274908274913016217190572102432929} a^{11} - \frac{16706109688360765774217922018288377534259755}{72144187884824724824739048651571716307298787} a^{10} - \frac{15394544707259373724160145296764498323003742}{72144187884824724824739048651571716307298787} a^{9} - \frac{27521976043699229847526751542405327813867579}{72144187884824724824739048651571716307298787} a^{8} + \frac{10993682570435711360412000268322897624568794}{24048062628274908274913016217190572102432929} a^{7} + \frac{864580646339085746779207620656592566886595}{24048062628274908274913016217190572102432929} a^{6} + \frac{25091797818991322608841788705715952391341458}{72144187884824724824739048651571716307298787} a^{5} + \frac{133584790906523763005516527694424562555798}{2487730616718093959473760298330059183010303} a^{4} + \frac{266811144376063832307251589415381819175590}{890668986232404010181963563599650818608627} a^{3} - \frac{3067158035865789979627492312235940717463499}{8016020876091636091637672072396857367477643} a^{2} + \frac{329154746951060397602642740790747599822366}{890668986232404010181963563599650818608627} a + \frac{623686402383864839261830876332892533883}{3412524851465149464298710971646171718807}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79554197.7611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.37349.1, 4.0.2197.1, 4.0.2873.1, 8.4.89093921102069.2, 8.4.89093921102069.1, 8.0.1394947801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |