Normalized defining polynomial
\( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 735 x^{12} - 1862 x^{11} + 4080 x^{10} - 7717 x^{9} + 15431 x^{8} - 28468 x^{7} + 49941 x^{6} - 69904 x^{5} + 95090 x^{4} - 97761 x^{3} + 141895 x^{2} - 101281 x + 32353 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7937726777341695855516080761=13^{14}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{99} a^{12} - \frac{2}{33} a^{11} + \frac{29}{99} a^{10} + \frac{1}{11} a^{9} + \frac{43}{99} a^{8} + \frac{5}{99} a^{7} + \frac{16}{33} a^{6} - \frac{28}{99} a^{5} - \frac{29}{99} a^{4} + \frac{10}{99} a^{3} - \frac{43}{99} a^{2} - \frac{13}{33} a + \frac{46}{99}$, $\frac{1}{99} a^{13} - \frac{7}{99} a^{11} - \frac{5}{33} a^{10} - \frac{2}{99} a^{9} - \frac{34}{99} a^{8} - \frac{7}{33} a^{7} - \frac{37}{99} a^{6} + \frac{1}{99} a^{5} + \frac{34}{99} a^{4} + \frac{17}{99} a^{3} + \frac{10}{99} a - \frac{7}{33}$, $\frac{1}{94464744422301} a^{14} - \frac{7}{94464744422301} a^{13} + \frac{408489527551}{94464744422301} a^{12} - \frac{222812469565}{8587704038391} a^{11} - \frac{34722364832137}{94464744422301} a^{10} + \frac{7149259330387}{94464744422301} a^{9} - \frac{8682202026529}{31488248140767} a^{8} + \frac{11443519839649}{31488248140767} a^{7} - \frac{11859076270543}{94464744422301} a^{6} + \frac{10193366268925}{94464744422301} a^{5} + \frac{443391869711}{1166231412621} a^{4} - \frac{137053373977}{954189337599} a^{3} + \frac{35896228567871}{94464744422301} a^{2} - \frac{35245376289061}{94464744422301} a + \frac{3546165347249}{94464744422301}$, $\frac{1}{778672888273027143} a^{15} + \frac{374}{70788444388457013} a^{14} + \frac{1933596087474278}{778672888273027143} a^{13} - \frac{111829713745934}{28839736602704709} a^{12} - \frac{60583024701542282}{778672888273027143} a^{11} + \frac{241330542224602940}{778672888273027143} a^{10} - \frac{373243299644383948}{778672888273027143} a^{9} + \frac{67659215775769514}{259557629424342381} a^{8} + \frac{18443446440714262}{70788444388457013} a^{7} + \frac{65357312144636720}{778672888273027143} a^{6} - \frac{24931772470387294}{778672888273027143} a^{5} + \frac{19894226197505560}{86519209808114127} a^{4} + \frac{267850722712693316}{778672888273027143} a^{3} - \frac{124404831211228048}{259557629424342381} a^{2} + \frac{2833702499588581}{259557629424342381} a - \frac{180355759955590541}{778672888273027143}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3583174.458 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.37349.1, 4.0.634933.1, 4.0.2873.1, 8.4.89093921102069.1, 8.4.308283464021.2, 8.0.403139914489.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $17$ | 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |