Normalized defining polynomial
\( x^{16} - 8 x^{15} + 26 x^{14} - 42 x^{13} - 123 x^{12} + 920 x^{11} - 1588 x^{10} - 541 x^{9} + 14638 x^{8} - 45186 x^{7} + 87563 x^{6} - 116912 x^{5} + 116423 x^{4} - 84579 x^{3} + 45084 x^{2} - 15676 x + 3181 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7937726777341695855516080761=13^{14}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{771} a^{13} + \frac{122}{771} a^{12} + \frac{25}{771} a^{11} - \frac{323}{771} a^{10} + \frac{332}{771} a^{9} - \frac{14}{771} a^{8} - \frac{5}{771} a^{7} - \frac{22}{771} a^{6} - \frac{23}{771} a^{5} + \frac{108}{257} a^{4} - \frac{73}{771} a^{3} + \frac{317}{771} a^{2} - \frac{182}{771} a - \frac{368}{771}$, $\frac{1}{1370089675881} a^{14} - \frac{7}{1370089675881} a^{13} - \frac{9854798138}{456696558627} a^{12} + \frac{177386366575}{1370089675881} a^{11} + \frac{79164310717}{1370089675881} a^{10} - \frac{651773571475}{1370089675881} a^{9} - \frac{39223956371}{456696558627} a^{8} - \frac{172623147164}{456696558627} a^{7} + \frac{205617582643}{1370089675881} a^{6} - \frac{341802481001}{1370089675881} a^{5} - \frac{141065072302}{1370089675881} a^{4} - \frac{441735540613}{1370089675881} a^{3} + \frac{24723348131}{1370089675881} a^{2} + \frac{42722342941}{152232186209} a - \frac{29417606588}{1370089675881}$, $\frac{1}{12330807082929} a^{15} - \frac{1}{4110269027643} a^{14} + \frac{7753223189}{12330807082929} a^{13} + \frac{1871698788139}{12330807082929} a^{12} - \frac{1018529133970}{12330807082929} a^{11} - \frac{615362049335}{1370089675881} a^{10} - \frac{5406303536212}{12330807082929} a^{9} - \frac{1873757530807}{4110269027643} a^{8} - \frac{4792627623242}{12330807082929} a^{7} + \frac{3769949289332}{12330807082929} a^{6} - \frac{332163508646}{4110269027643} a^{5} + \frac{2864374227337}{12330807082929} a^{4} - \frac{4466404901384}{12330807082929} a^{3} - \frac{17727814909}{12330807082929} a^{2} - \frac{5283219669554}{12330807082929} a + \frac{3960612071893}{12330807082929}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5337893.19324 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.37349.1, 4.0.634933.1, 4.0.2873.1, 8.4.89093921102069.2, 8.4.308283464021.1, 8.0.403139914489.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $17$ | 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |