Normalized defining polynomial
\( x^{16} - 8 x^{15} - 8 x^{14} + 196 x^{13} + 178 x^{12} - 3980 x^{11} - 3526 x^{10} + 59738 x^{9} + 67167 x^{8} - 680600 x^{7} - 511450 x^{6} + 4221358 x^{5} - 1294141 x^{4} - 5387882 x^{3} + 12528339 x^{2} - 8995382 x + 114193360 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79253796088782001552124351073601=37^{8}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{30} a^{11} + \frac{1}{15} a^{10} + \frac{1}{15} a^{9} + \frac{1}{30} a^{8} - \frac{1}{2} a^{7} - \frac{7}{15} a^{6} - \frac{1}{10} a^{5} + \frac{7}{15} a^{4} - \frac{1}{5} a^{3} + \frac{7}{30} a^{2} + \frac{11}{30} a - \frac{1}{3}$, $\frac{1}{30} a^{12} - \frac{1}{15} a^{10} + \frac{1}{15} a^{9} - \frac{1}{15} a^{8} - \frac{2}{15} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{30} a^{4} + \frac{7}{15} a^{3} - \frac{1}{10} a^{2} + \frac{13}{30} a$, $\frac{1}{30} a^{13} + \frac{1}{30} a^{10} + \frac{1}{15} a^{9} - \frac{1}{15} a^{8} - \frac{1}{2} a^{7} - \frac{4}{15} a^{6} - \frac{1}{6} a^{5} - \frac{1}{10} a^{4} - \frac{13}{30} a^{2} - \frac{4}{15} a$, $\frac{1}{31048572455651935815270} a^{14} - \frac{7}{31048572455651935815270} a^{13} - \frac{282481466301394063877}{31048572455651935815270} a^{12} - \frac{25001068837895422511}{2069904830376795721018} a^{11} + \frac{1217762163602840415746}{15524286227825967907635} a^{10} - \frac{402669743853366649231}{15524286227825967907635} a^{9} - \frac{65517411110645539758}{5174762075941989302545} a^{8} + \frac{455855686928629606187}{6209714491130387163054} a^{7} - \frac{2484136399207687256939}{6209714491130387163054} a^{6} - \frac{81882730796057318739}{2069904830376795721018} a^{5} - \frac{942523568704329155416}{3104857245565193581527} a^{4} - \frac{330965230758475220}{29017357435188725061} a^{3} - \frac{11710167986309253085543}{31048572455651935815270} a^{2} + \frac{5790274907933527528417}{15524286227825967907635} a + \frac{195597801835107847368}{1034952415188397860509}$, $\frac{1}{16838106571286879571658150050} a^{15} + \frac{5423}{336762131425737591433163001} a^{14} + \frac{8808338764935303492811111}{8419053285643439785829075025} a^{13} - \frac{63701790714259735431536541}{5612702190428959857219383350} a^{12} + \frac{9548132445450332484292457}{8419053285643439785829075025} a^{11} + \frac{418562473352869943303280619}{5612702190428959857219383350} a^{10} + \frac{286618960831201333186253}{1122540438085791971443876670} a^{9} + \frac{318822278128837586737351101}{5612702190428959857219383350} a^{8} - \frac{6984183070325799968642947639}{16838106571286879571658150050} a^{7} - \frac{14478991425428160975371888}{78682740987321867157281075} a^{6} - \frac{564295144614711944644652596}{2806351095214479928609691675} a^{5} - \frac{31568211307920075572830373}{673524262851475182866326002} a^{4} - \frac{2782857994562223124635631277}{5612702190428959857219383350} a^{3} - \frac{473763184258018872134308869}{1122540438085791971443876670} a^{2} - \frac{1937167781127638079310472197}{5612702190428959857219383350} a - \frac{132225965418926982026989172}{1683810657128687957165815005}$
Class group and class number
$C_{2}\times C_{48}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 994157972.902 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.94352849.1, 4.0.62197.1, 4.0.2550077.1, 8.0.158607139169.1, 8.0.217133173522361.1, 8.0.8902460114416801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |