Normalized defining polynomial
\( x^{16} - 8 x^{15} + 82 x^{14} - 400 x^{13} + 2138 x^{12} - 6903 x^{11} + 23397 x^{10} - 54193 x^{9} + 122896 x^{8} - 215474 x^{7} + 376822 x^{6} - 532544 x^{5} + 741836 x^{4} - 830694 x^{3} + 842431 x^{2} - 553149 x + 226071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7921586895449647259644140625=5^{8}\cdot 19^{8}\cdot 103^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{6066623318377244163057414835382340164598291} a^{15} - \frac{292341105295227545684399280041516716568750}{6066623318377244163057414835382340164598291} a^{14} - \frac{63449286375711662392633482688196022391735}{356860195198661421356318519728372950858723} a^{13} - \frac{601006619123254544053887880939365090002176}{6066623318377244163057414835382340164598291} a^{12} - \frac{1828809181806651806481777867303917056193743}{6066623318377244163057414835382340164598291} a^{11} - \frac{295167730497895091028000884940191494343665}{674069257597471573673046092820260018288699} a^{10} + \frac{168812020448075466932253545428154168358476}{2022207772792414721019138278460780054866097} a^{9} + \frac{1396084811391049734620350118072239270113059}{6066623318377244163057414835382340164598291} a^{8} - \frac{385827795590085577727369954124381012732029}{6066623318377244163057414835382340164598291} a^{7} + \frac{248574147431698502188313301862348850887117}{6066623318377244163057414835382340164598291} a^{6} - \frac{511136545678247691128014685583988827887657}{6066623318377244163057414835382340164598291} a^{5} + \frac{823549826656275625343852140328200491460132}{6066623318377244163057414835382340164598291} a^{4} - \frac{31225277349156139701383359332860136479215}{6066623318377244163057414835382340164598291} a^{3} + \frac{558571434792220954302474396244555131787109}{2022207772792414721019138278460780054866097} a^{2} - \frac{2744673576228411054503255750614707410987120}{6066623318377244163057414835382340164598291} a + \frac{171506337558300115095442200607851896516584}{674069257597471573673046092820260018288699}$
Class group and class number
$C_{2}\times C_{2}\times C_{404}$, which has order $1616$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10491.0986114 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2.D_6$ (as 16T754):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $Q_8:C_2^2.D_6$ |
| Character table for $Q_8:C_2^2.D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $103$ | 103.4.2.2 | $x^{4} - 103 x^{2} + 53045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 103.8.4.1 | $x^{8} + 106090 x^{4} - 1092727 x^{2} + 2813772025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |