Normalized defining polynomial
\( x^{16} - 3 x^{15} + 573 x^{14} + 9272 x^{13} + 337161 x^{12} + 6299195 x^{11} + 87537415 x^{10} + 1429221904 x^{9} + 16277482567 x^{8} + 215209853765 x^{7} + 2402287099291 x^{6} + 20641758474146 x^{5} + 168575519317340 x^{4} + 882336067964976 x^{3} + 4598319446544384 x^{2} + 12600832442989824 x + 49455952218418176 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(791005910030165719912925444172568170567213001250881=29^{14}\cdot 149^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1517.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{5} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{6} + \frac{1}{12} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{9} - \frac{1}{48} a^{8} - \frac{1}{24} a^{7} + \frac{1}{48} a^{6} + \frac{1}{24} a^{5} - \frac{7}{48} a^{4} + \frac{1}{48} a^{3} - \frac{7}{24} a^{2} - \frac{5}{12} a$, $\frac{1}{96} a^{10} - \frac{1}{96} a^{9} - \frac{1}{48} a^{8} + \frac{1}{96} a^{7} + \frac{1}{48} a^{6} - \frac{7}{96} a^{5} + \frac{1}{96} a^{4} - \frac{7}{48} a^{3} + \frac{7}{24} a^{2}$, $\frac{1}{288} a^{11} - \frac{1}{288} a^{10} + \frac{1}{144} a^{9} - \frac{1}{96} a^{8} + \frac{5}{144} a^{7} - \frac{3}{32} a^{6} - \frac{55}{288} a^{5} - \frac{11}{48} a^{4} - \frac{1}{6} a^{3} - \frac{4}{9} a^{2} - \frac{1}{2} a$, $\frac{1}{1728} a^{12} - \frac{1}{864} a^{11} - \frac{1}{288} a^{10} - \frac{1}{216} a^{9} + \frac{43}{1728} a^{8} - \frac{23}{864} a^{7} + \frac{79}{864} a^{6} - \frac{59}{432} a^{5} + \frac{55}{576} a^{4} - \frac{211}{864} a^{3} - \frac{187}{432} a^{2} + \frac{5}{18} a$, $\frac{1}{672192} a^{13} - \frac{47}{336096} a^{12} + \frac{281}{336096} a^{11} - \frac{739}{336096} a^{10} - \frac{4339}{672192} a^{9} + \frac{1805}{112032} a^{8} + \frac{473}{84024} a^{7} - \frac{727}{56016} a^{6} - \frac{10889}{672192} a^{5} - \frac{29987}{168048} a^{4} - \frac{1807}{56016} a^{3} + \frac{19367}{42012} a^{2} - \frac{6683}{14004} a - \frac{161}{389}$, $\frac{1}{22182336} a^{14} - \frac{13}{22182336} a^{13} + \frac{2309}{11091168} a^{12} + \frac{2183}{11091168} a^{11} + \frac{4313}{22182336} a^{10} - \frac{34187}{7394112} a^{9} + \frac{36439}{1008288} a^{8} + \frac{17659}{924264} a^{7} - \frac{827231}{22182336} a^{6} + \frac{4298557}{22182336} a^{5} - \frac{618125}{3697056} a^{4} + \frac{1225487}{5545584} a^{3} + \frac{337}{21006} a^{2} + \frac{5711}{12837} a - \frac{1235}{4279}$, $\frac{1}{17571347910192745500080519664979996982270668421447853932868149313720619786367813057262830592} a^{15} + \frac{492277111668611224082508519154064161400871119635437728974957008442712495872997227}{72310073704496895062059751707736613095764067577974707542667281126422303647604168959929344} a^{14} - \frac{4095429990400174509013108311393732261296292034580984390040505679046126024538333712309}{5857115970064248500026839888326665660756889473815951310956049771240206595455937685754276864} a^{13} - \frac{217164178130218066354700920062994684372618484768383379113770031183562657242301276368849}{4392836977548186375020129916244999245567667105361963483217037328430154946591953264315707648} a^{12} - \frac{3644189678497124160483418133319219506830850037898056418919033010708671989502724591467533}{5857115970064248500026839888326665660756889473815951310956049771240206595455937685754276864} a^{11} - \frac{68383589855069627004343433980648554713353792277745307882173798932243958524564402672577553}{17571347910192745500080519664979996982270668421447853932868149313720619786367813057262830592} a^{10} - \frac{5459707664406561605586900913523544942618039732962563788556538964274626565974932597664797}{17571347910192745500080519664979996982270668421447853932868149313720619786367813057262830592} a^{9} + \frac{65838968532550103177863895971312958546297634608153741809105621329536969863993312461049759}{4392836977548186375020129916244999245567667105361963483217037328430154946591953264315707648} a^{8} + \frac{8816726470250536492179560014216268422933611314336278268763865186414708852463910471012727}{17571347910192745500080519664979996982270668421447853932868149313720619786367813057262830592} a^{7} + \frac{1232164617594372456898928364572368529946906071603238294129661749809269529660208043886759825}{17571347910192745500080519664979996982270668421447853932868149313720619786367813057262830592} a^{6} + \frac{3787969690819787119802175614952219901693681696560763876884703721014102309749917207563135135}{17571347910192745500080519664979996982270668421447853932868149313720619786367813057262830592} a^{5} + \frac{1503881509706982724772494104302260995229014337425902069993118534804811414737566039785893151}{8785673955096372750040259832489998491135334210723926966434074656860309893183906528631415296} a^{4} - \frac{1053974268406618745198862556576762820936969896139557253897728358799258533019148219634738251}{4392836977548186375020129916244999245567667105361963483217037328430154946591953264315707648} a^{3} - \frac{19156394327599125231456037341821992700545781337640762945242227021859997128901642807580893}{45758718516126941406459686627552075474663199014187119616844138837814114026999513169955288} a^{2} + \frac{1268205632722042704669393976683372375771473645137304390528152252107795102378321135870127}{2542151028673718967025538145975115304147955500788173312046896602100784112611084064997516} a + \frac{134138094682720578975694413953473143776671078792178608693569277285316440956302306710863}{282461225408190996336170905108346144905328388976463701338544066900087123623453784999724}$
Class group and class number
$C_{2}\times C_{24222}\times C_{242220}$, which has order $11734105680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27354159575.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{4321}) \), 4.4.80677568161.1, 4.4.2781985109.1, 4.4.541460189.1, 8.0.28124827288894872783620641.1 x2, 8.8.6508870004372800921921.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 149 | Data not computed | ||||||