Normalized defining polynomial
\( x^{16} + 4 x^{14} + 104 x^{12} + 8 x^{10} + 2204 x^{8} - 6704 x^{6} + 69296 x^{4} - 64768 x^{2} + 364816 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(789298907447296000000000000=2^{36}\cdot 5^{12}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{48} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{5}{12}$, $\frac{1}{48} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{5}{12} a$, $\frac{1}{48} a^{10} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2}$, $\frac{1}{48} a^{11} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{5}{12} a^{3} - \frac{1}{2} a$, $\frac{1}{288} a^{12} + \frac{1}{144} a^{10} + \frac{1}{144} a^{8} + \frac{1}{12} a^{6} - \frac{5}{72} a^{4} - \frac{1}{2} a^{3} + \frac{4}{9} a^{2} - \frac{1}{2} a - \frac{2}{9}$, $\frac{1}{288} a^{13} + \frac{1}{144} a^{11} + \frac{1}{144} a^{9} + \frac{1}{12} a^{7} - \frac{5}{72} a^{5} + \frac{4}{9} a^{3} - \frac{1}{2} a^{2} - \frac{2}{9} a$, $\frac{1}{4868988940512} a^{14} + \frac{7364343839}{4868988940512} a^{12} + \frac{677829700}{152155904391} a^{10} + \frac{192468791}{135249692792} a^{8} - \frac{1}{4} a^{7} - \frac{21731549953}{152155904391} a^{6} - \frac{1}{4} a^{5} - \frac{25324107632}{152155904391} a^{4} + \frac{21170123662}{152155904391} a^{2} - \frac{62436229747}{202874539188}$, $\frac{1}{735217330017312} a^{15} + \frac{49525901327}{91902166252164} a^{13} + \frac{514629297703}{61268110834776} a^{11} + \frac{9319215359}{91902166252164} a^{9} + \frac{7165838576159}{91902166252164} a^{7} + \frac{20608812778247}{91902166252164} a^{5} - \frac{4816375233687}{10211351805796} a^{3} + \frac{2738471188625}{22975541563041} a$
Class group and class number
$C_{2}\times C_{78}$, which has order $156$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42940.0557728 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8):C_2^2$ (as 16T75):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times C_8):C_2^2$ |
| Character table for $(C_2\times C_8):C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.7600.1, \(\Q(\zeta_{20})^+\), 4.4.38000.1, 8.0.7023616000000.3, 8.0.280944640000.1, 8.8.23104000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |