Normalized defining polynomial
\( x^{16} + 72 x^{14} + 1392 x^{12} - 108753 x^{10} - 3371040 x^{8} + 74158208 x^{6} + 2825382976 x^{4} + 24471001088 x^{2} + 259398713344 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78810998787104838676665578559275236411249=71^{8}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $359.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{148} a^{8} - \frac{2}{37} a^{6} + \frac{2}{37} a^{4} - \frac{17}{148} a^{2} + \frac{12}{37}$, $\frac{1}{296} a^{9} - \frac{1}{37} a^{7} + \frac{1}{37} a^{5} - \frac{17}{296} a^{3} + \frac{6}{37} a$, $\frac{1}{1184} a^{10} - \frac{1}{4} a^{7} + \frac{15}{74} a^{6} + \frac{47}{1184} a^{4} - \frac{11}{148} a^{2} + \frac{1}{4} a + \frac{12}{37}$, $\frac{1}{2368} a^{11} - \frac{1}{296} a^{8} + \frac{15}{148} a^{7} + \frac{1}{37} a^{6} + \frac{47}{2368} a^{5} - \frac{1}{37} a^{4} - \frac{11}{296} a^{3} + \frac{17}{296} a^{2} + \frac{6}{37} a - \frac{6}{37}$, $\frac{1}{4736} a^{12} - \frac{1}{592} a^{9} - \frac{1}{296} a^{8} + \frac{1}{74} a^{7} - \frac{273}{4736} a^{6} - \frac{1}{74} a^{5} + \frac{29}{592} a^{4} + \frac{17}{592} a^{3} + \frac{31}{74} a + \frac{15}{37}$, $\frac{1}{18944} a^{13} + \frac{1}{1184} a^{9} - \frac{1}{296} a^{8} - \frac{2897}{18944} a^{7} + \frac{1}{37} a^{6} - \frac{235}{2368} a^{5} - \frac{1}{37} a^{4} + \frac{205}{592} a^{3} + \frac{17}{296} a^{2} + \frac{17}{296} a + \frac{25}{74}$, $\frac{1}{676408041831480099408355328} a^{14} + \frac{7625586639885718015427}{84551005228935012426044416} a^{12} + \frac{13557505053333099187919}{42275502614467506213022208} a^{10} - \frac{1}{592} a^{9} - \frac{973477982048829560714705}{676408041831480099408355328} a^{8} + \frac{1}{74} a^{7} + \frac{263900496988971052871933}{1142581151742365032784384} a^{6} - \frac{1}{74} a^{5} - \frac{1308009804750386486785341}{5284437826808438276627776} a^{4} + \frac{17}{592} a^{3} - \frac{3680598379955578030626351}{10568875653616876553255552} a^{2} - \frac{3}{37} a + \frac{199881505641691251619183}{660554728351054784578472}$, $\frac{1}{21531420787579674524366766800896} a^{15} - \frac{1}{1352816083662960198816710656} a^{14} + \frac{42622331980530906550145499}{2691427598447459315545845850112} a^{13} + \frac{10227243856088735621829}{169102010457870024852088832} a^{12} - \frac{124599199356848353288858961}{1345713799223729657772922925056} a^{11} - \frac{13557505053333099187919}{84551005228935012426044416} a^{10} + \frac{30960690571932558828830522927}{21531420787579674524366766800896} a^{9} + \frac{3258640285533559626283473}{1352816083662960198816710656} a^{8} + \frac{4622312741248144168899418401}{36370643222262963723592511488} a^{7} - \frac{391524109588572214684209}{2285162303484730065568768} a^{6} - \frac{18240045289780187813565711037}{168214224902966207221615365632} a^{5} - \frac{789697778526611815592239}{10568875653616876553255552} a^{4} + \frac{82657066937641281696901124369}{336428449805932414443230731264} a^{3} + \frac{2466605906229315183292943}{21137751307233753106511104} a^{2} - \frac{8805637349311773667510353793}{21026778112870775902701920704} a - \frac{378409810601435787991743}{1321109456702109569156944}$
Class group and class number
$C_{8}\times C_{40}\times C_{280}$, which has order $89600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 425039068999 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |