Normalized defining polynomial
\( x^{16} - 6 x^{15} - 101 x^{14} + 850 x^{13} + 1534 x^{12} - 35066 x^{11} + 136101 x^{10} + 39761 x^{9} - 3371036 x^{8} + 14774315 x^{7} - 18720912 x^{6} - 13870987 x^{5} + 345816880 x^{4} - 2092377208 x^{3} + 5795387679 x^{2} - 18442347063 x + 36752433199 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(786647542210626533905079006002056634177=43^{8}\cdot 97^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $269.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{45529239285606077404461542612295654407921166133363016285599127691641} a^{15} + \frac{1666217159344915422587078958815479857758895915755158072536035690073}{3502249175815852108035503277868896492917012779489462791199932899357} a^{14} - \frac{2955847608875192852938934726536005914883383831443084979761176059541}{45529239285606077404461542612295654407921166133363016285599127691641} a^{13} - \frac{16585234943370514886678290099089321858150285903983872306795928840977}{45529239285606077404461542612295654407921166133363016285599127691641} a^{12} + \frac{15972549030607040769384278267159650892926592196391015016093838930237}{45529239285606077404461542612295654407921166133363016285599127691641} a^{11} - \frac{4920424879474543737811304981085620738110400584482047517505451609663}{45529239285606077404461542612295654407921166133363016285599127691641} a^{10} + \frac{14368272220351380411049245325499863400369738677783500629967033043206}{45529239285606077404461542612295654407921166133363016285599127691641} a^{9} - \frac{14199391681660297860908923165396561418250315559725480366731457595012}{45529239285606077404461542612295654407921166133363016285599127691641} a^{8} + \frac{862551700776192541159781630296101383145686684894424917270034038346}{4139021753236916127678322055663241309811015103033001480509011608331} a^{7} - \frac{12931570255149118198712695588464728760919591801551060131582115286176}{45529239285606077404461542612295654407921166133363016285599127691641} a^{6} - \frac{656372239217456655767974055130529899610126303049885807272727665998}{4139021753236916127678322055663241309811015103033001480509011608331} a^{5} - \frac{20667063770255555272862770328443106257169955027481063981352881324636}{45529239285606077404461542612295654407921166133363016285599127691641} a^{4} - \frac{15651370299064981815076977628426308510563493590080023022313641467865}{45529239285606077404461542612295654407921166133363016285599127691641} a^{3} - \frac{9798156305682228036580240819148771932219025820108866344237711703730}{45529239285606077404461542612295654407921166133363016285599127691641} a^{2} + \frac{139139950771179908564915916649700486601132739866035761586490410042}{45529239285606077404461542612295654407921166133363016285599127691641} a - \frac{15702492983688991330996333146204768437139151139569934909022786111378}{45529239285606077404461542612295654407921166133363016285599127691641}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66420577588.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 4.0.179353.1, 8.0.29358407457971857.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.3.1 | $x^{4} - 97$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 97.4.3.1 | $x^{4} - 97$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |