Normalized defining polynomial
\( x^{16} - 4 x^{15} + 28 x^{14} - 88 x^{13} + 302 x^{12} - 682 x^{11} + 1537 x^{10} - 2539 x^{9} + 3950 x^{8} - 4498 x^{7} + 4616 x^{6} - 3328 x^{5} + 2263 x^{4} - 967 x^{3} + 530 x^{2} - 131 x + 61 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78345418253203369140625=5^{12}\cdot 41^{2}\cdot 661^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{275} a^{14} - \frac{1}{25} a^{13} + \frac{4}{275} a^{12} + \frac{12}{55} a^{11} - \frac{82}{275} a^{10} - \frac{63}{275} a^{9} - \frac{1}{11} a^{8} - \frac{16}{275} a^{7} - \frac{13}{275} a^{6} + \frac{69}{275} a^{5} + \frac{111}{275} a^{4} - \frac{19}{275} a^{3} + \frac{8}{55} a^{2} + \frac{12}{275} a - \frac{129}{275}$, $\frac{1}{4677850897161475} a^{15} + \frac{6677044622187}{4677850897161475} a^{14} + \frac{462513393511316}{4677850897161475} a^{13} + \frac{192154565283992}{4677850897161475} a^{12} + \frac{485882330339503}{4677850897161475} a^{11} + \frac{192934201793081}{425259172469225} a^{10} - \frac{705203818663189}{4677850897161475} a^{9} + \frac{1460050689928184}{4677850897161475} a^{8} + \frac{483253821271854}{4677850897161475} a^{7} - \frac{324921323908453}{935570179432295} a^{6} + \frac{1838031591367328}{4677850897161475} a^{5} - \frac{257492916920836}{4677850897161475} a^{4} + \frac{156525935342838}{425259172469225} a^{3} + \frac{305174358359247}{4677850897161475} a^{2} + \frac{1185318538036762}{4677850897161475} a + \frac{1730620352359518}{4677850897161475}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{76561602918138}{4677850897161475} a^{15} - \frac{4850607025328}{85051834493845} a^{14} + \frac{2009220578212374}{4677850897161475} a^{13} - \frac{5756098686318798}{4677850897161475} a^{12} + \frac{20351078334816134}{4677850897161475} a^{11} - \frac{8586604710809118}{935570179432295} a^{10} + \frac{98630314767380306}{4677850897161475} a^{9} - \frac{153344833481748663}{4677850897161475} a^{8} + \frac{240932215279915198}{4677850897161475} a^{7} - \frac{257007708296569822}{4677850897161475} a^{6} + \frac{53187620311320226}{935570179432295} a^{5} - \frac{178935928740576599}{4677850897161475} a^{4} + \frac{120664703103162758}{4677850897161475} a^{3} - \frac{44585127393037399}{4677850897161475} a^{2} + \frac{24336367694307539}{4677850897161475} a - \frac{405281674207967}{425259172469225} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119348.84075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.16525.1, 4.4.82625.1, 8.0.6826890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 661 | Data not computed | ||||||