Normalized defining polynomial
\( x^{16} - 3 x^{15} + 9 x^{14} - 18 x^{13} + 23 x^{12} - 43 x^{11} + 6 x^{10} + 16 x^{9} + 78 x^{8} + 392 x^{7} + 754 x^{6} + 1786 x^{5} + 2683 x^{4} + 3324 x^{3} + 3006 x^{2} + 1846 x + 781 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(781862084478759765625=5^{14}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{5}{11} a^{11} + \frac{1}{11} a^{10} - \frac{3}{11} a^{9} - \frac{5}{11} a^{8} + \frac{1}{11} a^{7} - \frac{2}{11} a^{6} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a$, $\frac{1}{121} a^{14} - \frac{1}{121} a^{13} + \frac{6}{121} a^{12} - \frac{5}{121} a^{11} + \frac{7}{121} a^{10} - \frac{24}{121} a^{9} - \frac{49}{121} a^{8} - \frac{58}{121} a^{7} + \frac{1}{11} a^{6} - \frac{12}{121} a^{5} - \frac{7}{121} a^{4} - \frac{31}{121} a^{3} - \frac{34}{121} a^{2} + \frac{20}{121} a + \frac{5}{11}$, $\frac{1}{17089894729930889119} a^{15} - \frac{40988714880351592}{17089894729930889119} a^{14} - \frac{534135089293337690}{17089894729930889119} a^{13} - \frac{25119240345141760}{141238799420916439} a^{12} + \frac{2470802874335418877}{17089894729930889119} a^{11} + \frac{4658771750170891564}{17089894729930889119} a^{10} - \frac{907794840114765298}{17089894729930889119} a^{9} + \frac{3827046300850604449}{17089894729930889119} a^{8} - \frac{518426130269390505}{17089894729930889119} a^{7} + \frac{5837390546586598262}{17089894729930889119} a^{6} + \frac{8132602394154368971}{17089894729930889119} a^{5} - \frac{3235331461685708189}{17089894729930889119} a^{4} - \frac{5724045834720207822}{17089894729930889119} a^{3} + \frac{3654551217200906890}{17089894729930889119} a^{2} - \frac{5882894502558712670}{17089894729930889119} a + \frac{102848262798304029}{1553626793630080829}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{81482896390942}{17089894729930889119} a^{15} + \frac{21690397837460048}{17089894729930889119} a^{14} - \frac{156826788645124381}{17089894729930889119} a^{13} + \frac{54855340919976686}{1553626793630080829} a^{12} - \frac{1682663990125282045}{17089894729930889119} a^{11} + \frac{3500834188345957459}{17089894729930889119} a^{10} - \frac{5771291024952579659}{17089894729930889119} a^{9} + \frac{7711554790514482706}{17089894729930889119} a^{8} - \frac{6635561522621844302}{17089894729930889119} a^{7} + \frac{3590548027888443140}{17089894729930889119} a^{6} + \frac{1506095017926403906}{17089894729930889119} a^{5} - \frac{5524663738756269576}{17089894729930889119} a^{4} + \frac{5096659284728456297}{17089894729930889119} a^{3} - \frac{21355212641558755474}{17089894729930889119} a^{2} + \frac{5626570474487287101}{17089894729930889119} a - \frac{469598433253968041}{1553626793630080829} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34534.2764565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1775.1, \(\Q(\zeta_{5})\), 4.2.8875.1, 8.0.393828125.1 x2, 8.0.78765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 71 | Data not computed | ||||||