Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 186 x^{12} - 388 x^{11} + 724 x^{10} - 1112 x^{9} + 1537 x^{8} - 2028 x^{7} + 2400 x^{6} - 2288 x^{5} + 2904 x^{4} - 3372 x^{3} + 2500 x^{2} - 1004 x + 1633 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(780855280180961608728576=2^{44}\cdot 3^{12}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{149} a^{12} - \frac{6}{149} a^{11} - \frac{9}{149} a^{10} - \frac{49}{149} a^{9} - \frac{57}{149} a^{8} + \frac{9}{149} a^{7} + \frac{36}{149} a^{6} - \frac{26}{149} a^{5} - \frac{45}{149} a^{4} + \frac{35}{149} a^{3} - \frac{8}{149} a^{2} - \frac{30}{149} a + \frac{15}{149}$, $\frac{1}{149} a^{13} - \frac{45}{149} a^{11} + \frac{46}{149} a^{10} - \frac{53}{149} a^{9} - \frac{35}{149} a^{8} - \frac{59}{149} a^{7} + \frac{41}{149} a^{6} - \frac{52}{149} a^{5} + \frac{63}{149} a^{4} + \frac{53}{149} a^{3} + \frac{71}{149} a^{2} - \frac{16}{149} a - \frac{59}{149}$, $\frac{1}{63018209} a^{14} - \frac{7}{63018209} a^{13} + \frac{102711}{63018209} a^{12} - \frac{616175}{63018209} a^{11} - \frac{19546305}{63018209} a^{10} - \frac{22656789}{63018209} a^{9} - \frac{25843468}{63018209} a^{8} - \frac{19535869}{63018209} a^{7} - \frac{30126060}{63018209} a^{6} - \frac{30456302}{63018209} a^{5} + \frac{13904040}{63018209} a^{4} + \frac{73204}{63018209} a^{3} + \frac{3440329}{63018209} a^{2} + \frac{5224272}{63018209} a + \frac{18649039}{63018209}$, $\frac{1}{618649757753} a^{15} + \frac{4901}{618649757753} a^{14} - \frac{534106128}{618649757753} a^{13} + \frac{1899617654}{618649757753} a^{12} + \frac{216985400871}{618649757753} a^{11} + \frac{289633043856}{618649757753} a^{10} - \frac{110488600658}{618649757753} a^{9} + \frac{71514432181}{618649757753} a^{8} + \frac{57568888378}{618649757753} a^{7} + \frac{210622701042}{618649757753} a^{6} - \frac{205440598703}{618649757753} a^{5} - \frac{226429929055}{618649757753} a^{4} - \frac{106317797574}{618649757753} a^{3} - \frac{68440525392}{618649757753} a^{2} + \frac{35741866514}{618649757753} a - \frac{22758479490}{618649757753}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9072.35800888 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), 4.0.27648.1 x2, 4.0.13824.1 x2, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.9792.1, 8.8.1534132224.1, 8.0.883660161024.5, 8.0.3057647616.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |