Normalized defining polynomial
\( x^{16} + 4x^{14} + 4x^{12} - 2x^{10} + 4x^{8} + 16x^{6} + 21x^{4} + 12x^{2} + 16 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(78074896000000000000\)
\(\medspace = 2^{16}\cdot 5^{12}\cdot 47^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.51\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{3/4}47^{1/2}\approx 45.84652548285205$ | ||
Ramified primes: |
\(2\), \(5\), \(47\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{7}+\frac{1}{8}a^{6}+\frac{1}{8}a^{4}+\frac{1}{8}a^{3}$, $\frac{1}{472}a^{14}+\frac{33}{472}a^{12}-\frac{1}{8}a^{11}-\frac{21}{236}a^{10}-\frac{1}{8}a^{9}+\frac{19}{472}a^{8}+\frac{83}{472}a^{6}+\frac{1}{8}a^{5}-\frac{57}{236}a^{4}+\frac{1}{8}a^{3}-\frac{5}{59}a^{2}+\frac{4}{59}$, $\frac{1}{472}a^{15}-\frac{13}{236}a^{13}-\frac{21}{236}a^{11}-\frac{5}{59}a^{9}-\frac{47}{236}a^{7}-\frac{57}{236}a^{5}-\frac{1}{2}a^{4}-\frac{217}{472}a^{3}-\frac{1}{2}a^{2}-\frac{51}{118}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{5}{118}a^{14}+\frac{35}{236}a^{12}-\frac{7}{236}a^{10}-\frac{105}{236}a^{8}+\frac{63}{236}a^{6}+\frac{217}{236}a^{4}+\frac{13}{236}a^{2}-\frac{38}{59}$, $\frac{2}{59}a^{15}-\frac{1}{59}a^{14}+\frac{7}{59}a^{13}-\frac{7}{118}a^{12}+\frac{9}{118}a^{11}-\frac{9}{236}a^{10}-\frac{25}{236}a^{9}-\frac{17}{236}a^{8}+\frac{37}{118}a^{7}-\frac{24}{59}a^{6}+\frac{75}{118}a^{5}-\frac{75}{236}a^{4}+\frac{93}{236}a^{3}-\frac{17}{236}a^{2}+\frac{5}{59}a-\frac{32}{59}$, $\frac{1}{59}a^{14}+\frac{7}{118}a^{12}+\frac{9}{236}a^{10}-\frac{21}{118}a^{8}-\frac{11}{118}a^{6}+\frac{75}{236}a^{4}-\frac{1}{2}a^{3}+\frac{19}{59}a^{2}-\frac{1}{2}a-\frac{27}{59}$, $\frac{1}{59}a^{14}+\frac{7}{118}a^{12}+\frac{9}{236}a^{10}-\frac{21}{118}a^{8}-\frac{11}{118}a^{6}+\frac{75}{236}a^{4}+\frac{1}{2}a^{3}+\frac{19}{59}a^{2}+\frac{1}{2}a-\frac{27}{59}$, $\frac{2}{59}a^{15}+\frac{1}{59}a^{14}+\frac{7}{59}a^{13}+\frac{7}{118}a^{12}+\frac{9}{118}a^{11}+\frac{9}{236}a^{10}-\frac{25}{236}a^{9}+\frac{17}{236}a^{8}+\frac{37}{118}a^{7}+\frac{24}{59}a^{6}+\frac{75}{118}a^{5}+\frac{75}{236}a^{4}+\frac{93}{236}a^{3}+\frac{17}{236}a^{2}+\frac{5}{59}a+\frac{32}{59}$, $\frac{15}{236}a^{15}+\frac{1}{236}a^{14}+\frac{105}{472}a^{13}+\frac{7}{472}a^{12}+\frac{19}{236}a^{11}-\frac{25}{472}a^{10}-\frac{197}{472}a^{9}-\frac{10}{59}a^{8}+\frac{71}{472}a^{7}-\frac{11}{472}a^{6}+\frac{237}{236}a^{5}+\frac{185}{472}a^{4}+\frac{511}{472}a^{3}-\frac{99}{236}a^{2}-\frac{55}{118}a-\frac{51}{59}$, $\frac{7}{472}a^{15}+\frac{1}{236}a^{14}-\frac{5}{472}a^{13}+\frac{7}{472}a^{12}-\frac{29}{236}a^{11}-\frac{25}{472}a^{10}+\frac{15}{472}a^{9}-\frac{10}{59}a^{8}+\frac{109}{472}a^{7}-\frac{11}{472}a^{6}-\frac{163}{236}a^{5}-\frac{51}{472}a^{4}-\frac{81}{236}a^{3}-\frac{217}{236}a^{2}-\frac{3}{118}a+\frac{8}{59}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1300.69001393 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1300.69001393 \cdot 2}{2\cdot\sqrt{78074896000000000000}}\cr\approx \mathstrut & 0.357566682900 \end{aligned}\]
Galois group
$C_4\times S_4$ (as 16T181):
A solvable group of order 96 |
The 20 conjugacy class representatives for $C_4\times S_4$ |
Character table for $C_4\times S_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.0.23500.1, 8.0.552250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | 12.4.1561497920000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.4.2 | $x^{4} + 4 x^{3} + 4 x^{2} + 12$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
2.4.4.2 | $x^{4} + 4 x^{3} + 4 x^{2} + 12$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
2.8.8.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(47\)
| 47.4.0.1 | $x^{4} + 8 x^{2} + 40 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
47.4.0.1 | $x^{4} + 8 x^{2} + 40 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
47.8.4.1 | $x^{8} + 204 x^{6} + 80 x^{5} + 14080 x^{4} - 6880 x^{3} + 384824 x^{2} - 499680 x + 3453444$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |