Normalized defining polynomial
\( x^{16} + 174 x^{14} - 164 x^{13} + 11648 x^{12} - 15708 x^{11} + 401124 x^{10} - 506040 x^{9} + 7714170 x^{8} - 7237928 x^{7} + 83714568 x^{6} - 33396192 x^{5} + 466924080 x^{4} + 125673152 x^{3} + 1316168472 x^{2} + 808621280 x + 1171252804 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78039659508312536877345552728064=2^{36}\cdot 3^{12}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{70} a^{14} + \frac{1}{7} a^{13} + \frac{8}{35} a^{12} + \frac{3}{35} a^{11} - \frac{3}{14} a^{10} - \frac{11}{70} a^{9} + \frac{2}{35} a^{8} - \frac{1}{35} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{12}{35} a^{3} - \frac{6}{35} a^{2} - \frac{3}{7} a - \frac{11}{35}$, $\frac{1}{33879795841968680729038116752189686722770676417924495553214764270} a^{15} - \frac{30882850160592205171914115468130454216199127533028659346471357}{4839970834566954389862588107455669531824382345417785079030680610} a^{14} + \frac{206051806750226216372394504694106542287470702355636665816594429}{2419985417283477194931294053727834765912191172708892539515340305} a^{13} + \frac{156640760072375084823804991723663917643946167387715212606410398}{2419985417283477194931294053727834765912191172708892539515340305} a^{12} + \frac{2954892561310811445967231273433765967677198155027350555483425311}{33879795841968680729038116752189686722770676417924495553214764270} a^{11} - \frac{573790366057158653330704796633593530444352950960293736371934548}{16939897920984340364519058376094843361385338208962247776607382135} a^{10} - \frac{2594957868618319889031926803122724451328362409521871938528609267}{33879795841968680729038116752189686722770676417924495553214764270} a^{9} - \frac{276554329683986815793746695213340947755757641077071192904601007}{2419985417283477194931294053727834765912191172708892539515340305} a^{8} + \frac{7167032715763961439820741237989613689462127794409423565486383218}{16939897920984340364519058376094843361385338208962247776607382135} a^{7} - \frac{80722278411044623762228333467725625020103437273752542096806296}{2419985417283477194931294053727834765912191172708892539515340305} a^{6} + \frac{484913793627661105752989140367091931896294697513586792075022693}{2419985417283477194931294053727834765912191172708892539515340305} a^{5} - \frac{2779861036372211266629498968153469563334728341785648760282052576}{16939897920984340364519058376094843361385338208962247776607382135} a^{4} - \frac{613682324564409488879237010413868193935525089372501186847097187}{2419985417283477194931294053727834765912191172708892539515340305} a^{3} - \frac{7063121635776310233210578613383078685520580263332726913760091126}{16939897920984340364519058376094843361385338208962247776607382135} a^{2} - \frac{4700647919834817775160455916884898608545785574966505832122926791}{16939897920984340364519058376094843361385338208962247776607382135} a - \frac{364778786466375329664005655712780606636438748987260050646403171}{16939897920984340364519058376094843361385338208962247776607382135}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{5926}$, which has order $189632$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9072.35800888 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.9792.1, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |