Normalized defining polynomial
\( x^{16} - 8 x^{15} + 166 x^{14} - 968 x^{13} + 10922 x^{12} - 48692 x^{11} + 381910 x^{10} - 1294564 x^{9} + 7667398 x^{8} - 18508272 x^{7} + 86507434 x^{6} - 122570424 x^{5} + 495625354 x^{4} - 153572468 x^{3} + 1237648906 x^{2} + 1155456948 x + 1587808969 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78039659508312536877345552728064=2^{36}\cdot 3^{12}\cdot 17^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{14} a^{13} - \frac{3}{14} a^{12} - \frac{1}{7} a^{11} - \frac{3}{14} a^{9} - \frac{3}{14} a^{8} - \frac{2}{7} a^{6} - \frac{5}{14} a^{5} - \frac{1}{2} a^{4} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{14} a - \frac{5}{14}$, $\frac{1}{1274} a^{14} - \frac{3}{91} a^{13} + \frac{138}{637} a^{12} - \frac{223}{1274} a^{11} - \frac{5}{637} a^{10} + \frac{317}{1274} a^{9} + \frac{201}{1274} a^{8} - \frac{289}{637} a^{7} + \frac{445}{1274} a^{6} + \frac{255}{637} a^{5} + \frac{12}{49} a^{4} + \frac{555}{1274} a^{3} + \frac{193}{637} a^{2} + \frac{627}{1274} a + \frac{503}{1274}$, $\frac{1}{1658653840101005327484281726543246693936730350171195719598} a^{15} + \frac{30036493880369300988766469820724862143210424257745187}{1658653840101005327484281726543246693936730350171195719598} a^{14} + \frac{1812169516290461866246372951060685449118296496574839026}{63794378465423281826318527943971026689874244237353681523} a^{13} + \frac{168764756925410249803798336909118320163746035476093798133}{829326920050502663742140863271623346968365175085597859799} a^{12} - \frac{2199278197810971760558441571256684887867284797787905423}{16925039184704135994737568638196394836089085205828527751} a^{11} + \frac{26124417309466695447111145686241320806108834676172441023}{236950548585857903926325960934749527705247192881599388514} a^{10} + \frac{303573817363712876507705316663932091879969900330572556109}{1658653840101005327484281726543246693936730350171195719598} a^{9} - \frac{11160686220930430988453968068814456265802569494637046630}{63794378465423281826318527943971026689874244237353681523} a^{8} - \frac{206101204450567706888098957015032120541731167578907709615}{1658653840101005327484281726543246693936730350171195719598} a^{7} - \frac{168266146548515247458505178072899768425446474168075137333}{1658653840101005327484281726543246693936730350171195719598} a^{6} - \frac{388265491368803516696424297711809271191619980318623301912}{829326920050502663742140863271623346968365175085597859799} a^{5} + \frac{51345305169267003873345799278391900754186434322057262331}{118475274292928951963162980467374763852623596440799694257} a^{4} + \frac{39621482428441235994387561218656307565490784477438913343}{118475274292928951963162980467374763852623596440799694257} a^{3} + \frac{5160644615053075028406062137755025809223493540752209919}{236950548585857903926325960934749527705247192881599388514} a^{2} - \frac{622335827752479001819345109218310654217552665000604737373}{1658653840101005327484281726543246693936730350171195719598} a - \frac{312701607541809270653444685691182192629819205391791442673}{829326920050502663742140863271623346968365175085597859799}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{5634}$, which has order $180288$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9072.35800888 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), 4.4.4352.1, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||