Normalized defining polynomial
\( x^{16} + 12 x^{14} + 138 x^{12} + 1040 x^{10} + 5541 x^{8} + 26220 x^{6} + 99328 x^{4} + 202728 x^{2} + 181476 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7785417828571545600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{24} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} + \frac{1}{6} a^{5} + \frac{11}{24} a^{4} - \frac{1}{6} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{72} a^{9} + \frac{1}{12} a^{7} - \frac{1}{6} a^{6} + \frac{3}{8} a^{5} - \frac{1}{3} a^{4} - \frac{13}{36} a^{3} - \frac{1}{6} a^{2} - \frac{5}{12} a$, $\frac{1}{72} a^{10} - \frac{1}{6} a^{7} - \frac{1}{8} a^{6} - \frac{1}{3} a^{5} + \frac{7}{18} a^{4} - \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{144} a^{11} + \frac{5}{48} a^{7} - \frac{1}{6} a^{6} - \frac{17}{36} a^{5} + \frac{1}{6} a^{4} + \frac{1}{24} a^{3} - \frac{1}{6} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{25920} a^{12} - \frac{23}{6480} a^{10} - \frac{61}{8640} a^{8} - \frac{163}{1296} a^{6} - \frac{1}{2} a^{5} + \frac{3157}{6480} a^{4} - \frac{1}{2} a^{3} + \frac{377}{1080} a^{2} - \frac{1}{2} a - \frac{131}{720}$, $\frac{1}{25920} a^{13} + \frac{11}{3240} a^{11} + \frac{59}{8640} a^{9} + \frac{5}{81} a^{7} - \frac{1}{6} a^{6} + \frac{2527}{6480} a^{5} - \frac{1}{3} a^{4} + \frac{4}{135} a^{3} - \frac{1}{6} a^{2} - \frac{251}{720} a - \frac{1}{2}$, $\frac{1}{1311163200} a^{14} - \frac{463}{262232640} a^{12} + \frac{952631}{437054400} a^{10} - \frac{25704371}{1311163200} a^{8} + \frac{282097}{20486925} a^{6} + \frac{31509517}{109263600} a^{4} - \frac{1}{2} a^{3} - \frac{3373501}{7284240} a^{2} - \frac{1}{2} a + \frac{273637}{4046800}$, $\frac{1}{93092587200} a^{15} - \frac{223037}{18618517440} a^{13} - \frac{277180667}{93092587200} a^{11} + \frac{560373439}{93092587200} a^{9} + \frac{6381469}{2909143350} a^{7} - \frac{1}{6} a^{6} - \frac{3842198489}{23273146800} a^{5} + \frac{1}{6} a^{4} - \frac{556721779}{1551543120} a^{3} + \frac{1}{3} a^{2} - \frac{6541397}{2585905200} a$
Class group and class number
$C_{2}\times C_{40}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15197.4244561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_4$ (as 16T25):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 \times D_4$ |
| Character table for $C_2^2 \times D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |