Normalized defining polynomial
\( x^{16} - 6 x^{15} + 23 x^{14} - 68 x^{13} + 148 x^{12} - 258 x^{11} + 486 x^{10} - 654 x^{9} + 1183 x^{8} - 2462 x^{7} + 3094 x^{6} - 5146 x^{5} + 6498 x^{4} - 4324 x^{3} + 5227 x^{2} - 822 x + 3231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(778257078845440000000000=2^{24}\cdot 5^{10}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{30} a^{12} + \frac{1}{5} a^{10} - \frac{4}{15} a^{9} - \frac{1}{10} a^{8} + \frac{7}{15} a^{7} - \frac{7}{30} a^{6} + \frac{1}{15} a^{5} + \frac{1}{10} a^{4} + \frac{1}{3} a^{3} - \frac{1}{15} a^{2} - \frac{4}{15} a - \frac{3}{10}$, $\frac{1}{30} a^{13} - \frac{2}{15} a^{11} + \frac{1}{15} a^{10} - \frac{13}{30} a^{9} + \frac{7}{15} a^{8} - \frac{7}{30} a^{7} + \frac{2}{5} a^{6} + \frac{1}{10} a^{5} - \frac{1}{3} a^{4} - \frac{2}{5} a^{3} - \frac{4}{15} a^{2} + \frac{11}{30} a$, $\frac{1}{4590} a^{14} + \frac{49}{4590} a^{13} - \frac{2}{459} a^{12} - \frac{64}{765} a^{11} + \frac{1199}{4590} a^{10} - \frac{209}{918} a^{9} - \frac{2003}{4590} a^{8} - \frac{19}{102} a^{7} - \frac{1237}{4590} a^{6} + \frac{47}{102} a^{5} + \frac{62}{153} a^{4} - \frac{1058}{2295} a^{3} + \frac{1121}{4590} a^{2} - \frac{131}{1530} a - \frac{67}{255}$, $\frac{1}{26588268802778060414790} a^{15} - \frac{226110067845720143}{26588268802778060414790} a^{14} - \frac{239311422692787141641}{26588268802778060414790} a^{13} - \frac{114430679418287423033}{8862756267592686804930} a^{12} - \frac{510255203761052857771}{26588268802778060414790} a^{11} - \frac{2475416306662499500219}{26588268802778060414790} a^{10} + \frac{2416631055075335802458}{13294134401389030207395} a^{9} + \frac{9837306821298530513}{1477126044598781134155} a^{8} + \frac{3198822179985845802457}{13294134401389030207395} a^{7} - \frac{130537528696588788434}{1477126044598781134155} a^{6} + \frac{3753878226749015180837}{8862756267592686804930} a^{5} - \frac{4732285984407276064831}{26588268802778060414790} a^{4} - \frac{8986065313871407232191}{26588268802778060414790} a^{3} - \frac{2312043748795762593617}{8862756267592686804930} a^{2} + \frac{135010092650693479781}{984750696399187422770} a - \frac{68287445549927188669}{984750696399187422770}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109907.73837 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n869 |
| Character table for t16n869 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), 4.0.65600.2, 4.0.65600.5, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.4303360000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |