Normalized defining polynomial
\( x^{16} - 6 x^{15} + 19 x^{14} - 43 x^{13} + 245 x^{12} - 837 x^{11} + 2250 x^{10} - 2227 x^{9} - 454 x^{8} + 17194 x^{7} + 13639 x^{6} - 65293 x^{5} + 388293 x^{4} - 718066 x^{3} + 1544858 x^{2} - 2274735 x + 5689003 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(77190325834356486941365599953=17^{11}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{147} a^{14} - \frac{5}{147} a^{13} + \frac{2}{49} a^{12} + \frac{1}{49} a^{11} + \frac{53}{147} a^{10} - \frac{73}{147} a^{9} - \frac{11}{147} a^{8} - \frac{37}{147} a^{7} + \frac{38}{147} a^{6} + \frac{5}{21} a^{5} - \frac{1}{21} a^{4} - \frac{6}{49} a^{3} - \frac{43}{147} a^{2} - \frac{17}{147} a + \frac{68}{147}$, $\frac{1}{45147411445920705563835677235403355593851549} a^{15} + \frac{43820359931927361325191634370634794095480}{45147411445920705563835677235403355593851549} a^{14} + \frac{45733276722714654815192134883086797319927}{2149876735520033598277889392162064552088169} a^{13} - \frac{492682559313027474210974945166991161030146}{15049137148640235187945225745134451864617183} a^{12} + \frac{10530228250631877879273022351222229484210344}{45147411445920705563835677235403355593851549} a^{11} + \frac{2074604521511045489742344535320479008511964}{45147411445920705563835677235403355593851549} a^{10} + \frac{13750245402497781186201625798296920712734638}{45147411445920705563835677235403355593851549} a^{9} - \frac{4316996455795748750579312254168097374874635}{45147411445920705563835677235403355593851549} a^{8} + \frac{157975648231548246732720084421831967203708}{1962930932431335024514594662408841547558763} a^{7} + \frac{12049386647932843333801180698559740969817445}{45147411445920705563835677235403355593851549} a^{6} + \frac{3175021137681648018829696561178023984795415}{6449630206560100794833668176486193656264507} a^{5} - \frac{5747852127435483796980465552281871094124409}{15049137148640235187945225745134451864617183} a^{4} - \frac{20775938464300515356460576680580686836677325}{45147411445920705563835677235403355593851549} a^{3} - \frac{120186105803715936221854472648751490911551}{921375743794300113547666882355170522323501} a^{2} + \frac{5162935900596119809704333461261533185514}{40059814947578265806420299232833500970587} a + \frac{6867389571080811923486565196724490096256063}{15049137148640235187945225745134451864617183}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24027892.3072 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-83}) \), 4.0.117113.1, 8.0.233162731073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.5 | $x^{8} + 459$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.4.2 | $x^{8} - 4913 x^{2} + 918731$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 83 | Data not computed | ||||||