/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 + 29*x^14 + 341*x^12 + 1824*x^10 + 11039*x^8 + 117686*x^6 + 450528*x^4 + 15768841, 16, 868, [0, 8], 770237898866611225600000000, [2, 5, 11, 19], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/19*a^8 - 9/19*a^6 - 1/19*a^4, 1/19*a^9 - 9/19*a^7 - 1/19*a^5, 1/19*a^10 - 6/19*a^6 - 9/19*a^4, 1/19*a^11 - 6/19*a^7 - 9/19*a^5, 1/1805*a^12 - 47/1805*a^10 - 1/1805*a^8 - 3/95*a^6 - 6/19*a^4 - 1/5*a^2 - 1/5, 1/1805*a^13 - 47/1805*a^11 - 1/1805*a^9 - 3/95*a^7 - 6/19*a^5 - 1/5*a^3 - 1/5*a, 1/1620970365548695865*a^14 + 19756910836077/324194073109739173*a^12 - 6056498330781/270387050133227*a^10 + 1792542533030884/85314229765720835*a^8 + 21513627368178119/85314229765720835*a^6 + 305769051587424/4490222619248465*a^4 + 651132812264797/4490222619248465*a^2 - 2589129807048/21484318752385, 1/1620970365548695865*a^15 + 19756910836077/324194073109739173*a^13 - 6056498330781/270387050133227*a^11 + 1792542533030884/85314229765720835*a^9 + 21513627368178119/85314229765720835*a^7 + 305769051587424/4490222619248465*a^5 + 651132812264797/4490222619248465*a^3 - 2589129807048/21484318752385*a], 0, 4, [2, 2], 1, [ (909326331)/(871021152900965)*a^(14) + (27514907889)/(871021152900965)*a^(12) + (284485788)/(726456341035)*a^(10) + (85378514053)/(45843218573735)*a^(8) + (123456892997)/(45843218573735)*a^(6) + (69264683044)/(2412800977565)*a^(4) + (603653084193)/(2412800977565)*a^(2) - (17442285134)/(11544502285) , (222957582)/(871021152900965)*a^(14) + (320354196)/(174204230580193)*a^(12) - (8761739)/(145291268207)*a^(10) - (54630904122)/(45843218573735)*a^(8) - (325608193187)/(45843218573735)*a^(6) - (80846051147)/(2412800977565)*a^(4) - (635294881271)/(2412800977565)*a^(2) - (6327632851)/(11544502285) , (80642952857)/(85314229765720835)*a^(14) + (2237361046692)/(85314229765720835)*a^(12) + (19727339649)/(71154486877165)*a^(10) + (13969101884516)/(17062845953144167)*a^(8) - (2005585144683)/(4490222619248465)*a^(6) + (189927843438987)/(4490222619248465)*a^(4) + (29849806881227)/(236327506276235)*a^(2) - (25615310739901)/(21484318752385) , (11685292288987)/(1620970365548695865)*a^(15) - (284288436096)/(147360942322608715)*a^(14) + (279799891229812)/(1620970365548695865)*a^(13) + (13228061104534)/(147360942322608715)*a^(12) + (1391973579594)/(1351935250666135)*a^(11) + (5683892564753)/(1351935250666135)*a^(10) - (181948857610939)/(17062845953144167)*a^(9) + (98460269070499)/(1551167813922197)*a^(8) - (10296894293847938)/(85314229765720835)*a^(7) + (3003643114127949)/(7755839069610985)*a^(6) - (189811772257132)/(4490222619248465)*a^(5) + (389916768998346)/(408202056295315)*a^(4) - (2537019295862028)/(4490222619248465)*a^(3) + (3258811546959529)/(408202056295315)*a^(2) - (647410244454564)/(21484318752385)*a + (1541877215417182)/(21484318752385) , (169521154422)/(1620970365548695865)*a^(15) + (4064446301634)/(147360942322608715)*a^(14) - (263948482705638)/(1620970365548695865)*a^(13) + (170902591095714)/(147360942322608715)*a^(12) - (6723322641336)/(1351935250666135)*a^(11) + (28327600616468)/(1351935250666135)*a^(10) - (1094088638639522)/(17062845953144167)*a^(9) + (285785800904348)/(1551167813922197)*a^(8) - (34095884614919608)/(85314229765720835)*a^(7) + (6561664958243804)/(7755839069610985)*a^(6) - (7386722128736252)/(4490222619248465)*a^(5) + (1769055008450106)/(408202056295315)*a^(4) - (49829035704024348)/(4490222619248465)*a^(3) + (13627518303239564)/(408202056295315)*a^(2) - (1415915399030044)/(21484318752385)*a + (1493310127120037)/(21484318752385) , (1570976222262)/(4490222619248465)*a^(15) + (9134715715324)/(29472188464521743)*a^(14) + (598955398784772)/(85314229765720835)*a^(13) + (353396672758211)/(147360942322608715)*a^(12) + (3779921695989)/(71154486877165)*a^(11) + (8947411625077)/(1351935250666135)*a^(10) + (11607752157969801)/(85314229765720835)*a^(9) - (705124368505709)/(7755839069610985)*a^(8) + (11532324033302576)/(4490222619248465)*a^(7) + (20749289898803477)/(7755839069610985)*a^(6) + (85639115239765583)/(4490222619248465)*a^(5) - (1205534598013338)/(81640411259063)*a^(4) - (10582090714522036)/(236327506276235)*a^(3) + (25828849617235194)/(408202056295315)*a^(2) + (11636640776776567)/(21484318752385)*a - (1793847404254944)/(21484318752385) , (119598965791751613)/(1620970365548695865)*a^(15) + (656859383401130544)/(1620970365548695865)*a^(14) + (5475341700947043192)/(1620970365548695865)*a^(13) + (23604162528301869944)/(1620970365548695865)*a^(12) + (88850893339053199)/(1351935250666135)*a^(11) + (301866243918541943)/(1351935250666135)*a^(10) + (58114307749792309009)/(85314229765720835)*a^(9) + (29682281815270438127)/(17062845953144167)*a^(8) + (354715034486697072591)/(85314229765720835)*a^(7) + (731107671078920284969)/(85314229765720835)*a^(6) + (93453843019728784607)/(4490222619248465)*a^(5) + (226002948425450910891)/(4490222619248465)*a^(4) + (556788891270124424064)/(4490222619248465)*a^(3) + (1243576972055788916619)/(4490222619248465)*a^(2) + (9627490669213284653)/(21484318752385)*a + (6705983867010903897)/(21484318752385) ], 1716877.54876, [[x^2 - x - 1, 1], [x^4 - 2*x^3 + 2*x^2 - x - 1, 1], [x^4 - x^3 + 7*x^2 - 4*x + 16, 1], [x^4 - x^3 + 2*x - 1, 1], [x^8 - x^7 + 3*x^6 - x^5 + 8*x^4 + x^3 + 3*x^2 + x + 1, 1]]]