Normalized defining polynomial
\( x^{16} - 2 x^{15} - 10 x^{14} + 6 x^{13} + 55 x^{12} + 16 x^{11} + 395 x^{10} - 940 x^{9} - 3716 x^{8} + 7692 x^{7} + 14333 x^{6} - 32172 x^{5} - 24511 x^{4} + 66066 x^{3} + 8379 x^{2} - 64942 x + 31769 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7692019372935056259765625=5^{10}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a$, $\frac{1}{328} a^{14} - \frac{3}{328} a^{13} - \frac{7}{82} a^{12} - \frac{67}{328} a^{11} + \frac{27}{164} a^{10} + \frac{57}{328} a^{9} + \frac{3}{41} a^{8} - \frac{29}{328} a^{7} + \frac{73}{328} a^{6} - \frac{17}{41} a^{5} + \frac{18}{41} a^{4} + \frac{15}{82} a^{3} + \frac{121}{328} a^{2} - \frac{95}{328} a + \frac{29}{328}$, $\frac{1}{392112639870721903021605819464} a^{15} + \frac{102728357254353684956693453}{392112639870721903021605819464} a^{14} + \frac{5944386205870114175028607589}{196056319935360951510802909732} a^{13} + \frac{33313603540704592125831011739}{392112639870721903021605819464} a^{12} - \frac{347787737353033456373024133}{49014079983840237877700727433} a^{11} + \frac{8030144364471564282468573351}{392112639870721903021605819464} a^{10} + \frac{531712096379012267773432257}{3322988473480694093403439148} a^{9} + \frac{20784562557936362124123988233}{392112639870721903021605819464} a^{8} + \frac{35646850107382585079134457331}{392112639870721903021605819464} a^{7} + \frac{14152221632601958422289752411}{196056319935360951510802909732} a^{6} - \frac{46514517402144310566211151641}{98028159967680475755401454866} a^{5} + \frac{9707282364426415883893588858}{49014079983840237877700727433} a^{4} - \frac{88879225988102265658018933851}{392112639870721903021605819464} a^{3} - \frac{85468037204450674423568206807}{392112639870721903021605819464} a^{2} - \frac{57203034541902262202623086537}{392112639870721903021605819464} a + \frac{25969299652168953635451106439}{196056319935360951510802909732}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 614911.087883 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-155}) \), 4.0.4805.1 x2, 4.2.775.1 x2, \(\Q(\sqrt{5}, \sqrt{-31})\), 8.0.110937960125.1, 8.0.2773449003125.1, 8.0.577200625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $31$ | 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 31.8.6.2 | $x^{8} + 713 x^{4} + 138384$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |