Normalized defining polynomial
\( x^{16} - 6 x^{13} + 9 x^{12} - 54 x^{11} + 18 x^{10} + 126 x^{9} - 196 x^{8} + 444 x^{7} + 540 x^{6} - 3762 x^{5} + 7785 x^{4} - 8262 x^{3} + 5202 x^{2} - 1734 x + 289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(767858691933644783616=2^{24}\cdot 3^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{680} a^{12} + \frac{1}{17} a^{11} + \frac{11}{170} a^{10} - \frac{7}{20} a^{9} - \frac{83}{340} a^{8} + \frac{53}{340} a^{7} + \frac{3}{340} a^{6} + \frac{4}{17} a^{5} + \frac{151}{340} a^{4} - \frac{1}{20} a^{3} + \frac{101}{340} a^{2} + \frac{7}{20} a + \frac{7}{40}$, $\frac{1}{680} a^{13} + \frac{18}{85} a^{11} + \frac{21}{340} a^{10} + \frac{87}{340} a^{9} - \frac{27}{340} a^{8} + \frac{93}{340} a^{7} - \frac{2}{17} a^{6} - \frac{159}{340} a^{5} + \frac{63}{340} a^{4} - \frac{69}{340} a^{3} + \frac{159}{340} a^{2} - \frac{13}{40} a$, $\frac{1}{2955280} a^{14} - \frac{251}{1477640} a^{13} + \frac{2141}{2955280} a^{12} - \frac{304223}{1477640} a^{11} - \frac{154371}{1477640} a^{10} - \frac{72993}{184705} a^{9} - \frac{364287}{738820} a^{8} + \frac{138099}{295528} a^{7} + \frac{801}{738820} a^{6} - \frac{457699}{1477640} a^{5} - \frac{162999}{738820} a^{4} - \frac{17893}{369410} a^{3} + \frac{266997}{2955280} a^{2} - \frac{19449}{43460} a - \frac{43121}{173840}$, $\frac{1}{222407998261040} a^{15} - \frac{8826343}{111203999130520} a^{14} - \frac{140173058979}{222407998261040} a^{13} + \frac{1776064101}{11120399913052} a^{12} - \frac{4476018418359}{22240799826104} a^{11} - \frac{1574672946451}{13900499891315} a^{10} - \frac{1427650182401}{27800999782630} a^{9} + \frac{15868262300277}{111203999130520} a^{8} + \frac{313742421661}{1635352928390} a^{7} - \frac{41841710997017}{111203999130520} a^{6} - \frac{36458834031}{271229266172} a^{5} + \frac{25417026551503}{55601999565260} a^{4} + \frac{1662991520749}{4196377325680} a^{3} - \frac{6687825067099}{13900499891315} a^{2} + \frac{2146045143707}{13082823427120} a + \frac{983560374347}{6541411713560}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{347309919}{102350666480} a^{15} + \frac{9414849}{6020627440} a^{14} + \frac{111029739}{102350666480} a^{13} - \frac{401826141}{20470133296} a^{12} + \frac{553891071}{25587666620} a^{11} - \frac{8971199479}{51175333240} a^{10} - \frac{450186789}{25587666620} a^{9} + \frac{20461719303}{51175333240} a^{8} - \frac{25135776777}{51175333240} a^{7} + \frac{13379726255}{10235066648} a^{6} + \frac{122292128631}{51175333240} a^{5} - \frac{294949776771}{25587666620} a^{4} + \frac{2194838163531}{102350666480} a^{3} - \frac{1972083124189}{102350666480} a^{2} + \frac{66948900831}{6020627440} a - \frac{3020353569}{1204125488} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12529.3021665 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{17})\), 4.2.1156.1 x2, 4.0.272.1 x2, 8.0.21381376.2, 8.2.6927565824.1 x4, 8.0.1630015488.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |