Normalized defining polynomial
\( x^{16} - 8 x^{15} + 44 x^{14} - 162 x^{13} + 457 x^{12} - 978 x^{11} + 1646 x^{10} - 2074 x^{9} + 1928 x^{8} - 1024 x^{7} + 32 x^{6} + 522 x^{5} - 375 x^{4} + 34 x^{3} + 134 x^{2} - 102 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(767858691933644783616=2^{24}\cdot 3^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{820} a^{14} + \frac{5}{164} a^{13} - \frac{1}{82} a^{12} + \frac{72}{205} a^{11} + \frac{24}{205} a^{10} + \frac{92}{205} a^{9} - \frac{37}{410} a^{8} + \frac{3}{205} a^{7} + \frac{13}{82} a^{6} - \frac{78}{205} a^{5} + \frac{53}{410} a^{4} - \frac{61}{410} a^{3} + \frac{1}{164} a^{2} - \frac{393}{820} a + \frac{20}{41}$, $\frac{1}{3675747033880} a^{15} - \frac{1211094391}{3675747033880} a^{14} + \frac{24883982399}{735149406776} a^{13} - \frac{232220027757}{3675747033880} a^{12} + \frac{611119098919}{1837873516940} a^{11} - \frac{3428283869}{15843737215} a^{10} - \frac{708717787241}{1837873516940} a^{9} + \frac{184744215339}{918936758470} a^{8} + \frac{83486373076}{459468379235} a^{7} - \frac{59888636414}{459468379235} a^{6} + \frac{188406415371}{459468379235} a^{5} + \frac{738044969791}{1837873516940} a^{4} + \frac{985831987827}{3675747033880} a^{3} - \frac{768303624823}{3675747033880} a^{2} + \frac{965499559}{2947672040} a + \frac{307289750581}{735149406776}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{198694469}{1545730460} a^{15} + \frac{1494745393}{1545730460} a^{14} - \frac{1594425355}{309146092} a^{13} + \frac{27960280593}{1545730460} a^{12} - \frac{7523163315}{154573046} a^{11} + \frac{37687516604}{386432615} a^{10} - \frac{23496851125}{154573046} a^{9} + \frac{13046468659}{77286523} a^{8} - \frac{50109932531}{386432615} a^{7} + \frac{11977089467}{386432615} a^{6} + \frac{2839298956}{77286523} a^{5} - \frac{39640340897}{772865230} a^{4} + \frac{20501473829}{1545730460} a^{3} + \frac{15324208357}{1545730460} a^{2} - \frac{419917283}{35947220} a + \frac{1161686991}{309146092} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20048.5497167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_8$ (as 16T29):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2\times D_8$ |
| Character table for $C_2\times D_8$ |
Intermediate fields
| \(\Q(\sqrt{51}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-51}) \), 4.0.2448.1, 4.0.272.1, \(\Q(i, \sqrt{51})\), 8.0.20123648.2, 8.0.1630015488.1, 8.0.1731891456.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |