Normalized defining polynomial
\( x^{16} - 8 x^{15} + 84 x^{14} - 448 x^{13} + 2650 x^{12} - 10440 x^{11} + 42320 x^{10} - 125624 x^{9} + 372741 x^{8} - 835472 x^{7} + 2002148 x^{6} - 3512472 x^{5} + 8820932 x^{4} - 12559848 x^{3} + 24807628 x^{2} - 19004192 x + 22430641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(766992641892445428121600000000=2^{48}\cdot 5^{8}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1360=2^{4}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1360}(1,·)$, $\chi_{1360}(69,·)$, $\chi_{1360}(1089,·)$, $\chi_{1360}(1291,·)$, $\chi_{1360}(271,·)$, $\chi_{1360}(339,·)$, $\chi_{1360}(341,·)$, $\chi_{1360}(409,·)$, $\chi_{1360}(1359,·)$, $\chi_{1360}(611,·)$, $\chi_{1360}(679,·)$, $\chi_{1360}(681,·)$, $\chi_{1360}(749,·)$, $\chi_{1360}(951,·)$, $\chi_{1360}(1019,·)$, $\chi_{1360}(1021,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{63} a^{8} - \frac{4}{63} a^{7} - \frac{2}{63} a^{6} + \frac{20}{63} a^{5} + \frac{17}{63} a^{4} - \frac{1}{7} a^{3} - \frac{1}{3} a^{2} - \frac{2}{63} a - \frac{1}{9}$, $\frac{1}{63} a^{9} + \frac{1}{21} a^{6} - \frac{2}{63} a^{5} - \frac{22}{63} a^{4} - \frac{1}{21} a^{3} + \frac{4}{63} a^{2} - \frac{5}{21} a - \frac{1}{63}$, $\frac{1}{441} a^{10} + \frac{2}{441} a^{9} - \frac{1}{147} a^{8} - \frac{1}{21} a^{7} - \frac{17}{441} a^{6} - \frac{68}{441} a^{5} - \frac{89}{441} a^{4} - \frac{2}{441} a^{3} - \frac{178}{441} a^{2} + \frac{11}{441} a + \frac{190}{441}$, $\frac{1}{441} a^{11} - \frac{1}{441} a^{8} - \frac{31}{441} a^{7} + \frac{22}{441} a^{6} + \frac{124}{441} a^{5} - \frac{55}{441} a^{4} + \frac{61}{147} a^{3} - \frac{88}{441} a^{2} + \frac{23}{63} a + \frac{82}{441}$, $\frac{1}{71001} a^{12} - \frac{2}{23667} a^{11} - \frac{22}{71001} a^{10} + \frac{55}{23667} a^{9} - \frac{526}{71001} a^{8} + \frac{1048}{71001} a^{7} - \frac{928}{23667} a^{6} + \frac{5443}{71001} a^{5} - \frac{4663}{10143} a^{4} - \frac{13931}{71001} a^{3} - \frac{2853}{7889} a^{2} - \frac{2071}{71001} a - \frac{1354}{71001}$, $\frac{1}{5609079} a^{13} + \frac{11}{1869693} a^{12} + \frac{344}{1869693} a^{11} + \frac{706}{801297} a^{10} - \frac{16631}{5609079} a^{9} + \frac{11114}{1869693} a^{8} + \frac{5800}{243873} a^{7} + \frac{118948}{1869693} a^{6} + \frac{2681254}{5609079} a^{5} + \frac{1207282}{5609079} a^{4} + \frac{1379758}{5609079} a^{3} + \frac{86792}{1869693} a^{2} - \frac{803126}{1869693} a - \frac{2524639}{5609079}$, $\frac{1}{5482308205521} a^{14} - \frac{1}{783186886503} a^{13} + \frac{6324610}{5482308205521} a^{12} - \frac{37947569}{5482308205521} a^{11} + \frac{1478231863}{1827436068507} a^{10} - \frac{21825625396}{5482308205521} a^{9} - \frac{7592869}{7129139409} a^{8} + \frac{153891994447}{5482308205521} a^{7} + \frac{30407009872}{1827436068507} a^{6} - \frac{903535273117}{5482308205521} a^{5} - \frac{344576128136}{783186886503} a^{4} + \frac{1070632909747}{5482308205521} a^{3} - \frac{162479384279}{609145356169} a^{2} - \frac{1996910041718}{5482308205521} a - \frac{292292989}{783186886503}$, $\frac{1}{75431078599763439} a^{15} + \frac{6872}{75431078599763439} a^{14} - \frac{861653855}{75431078599763439} a^{13} + \frac{7015798807}{10775868371394777} a^{12} - \frac{2379957993848}{3279612113033193} a^{11} - \frac{12015321347150}{75431078599763439} a^{10} + \frac{14557966205652}{8381230955529271} a^{9} + \frac{18187928899481}{3591956123798259} a^{8} + \frac{56821048359871}{25143692866587813} a^{7} + \frac{4091420679618946}{75431078599763439} a^{6} + \frac{20558196078912754}{75431078599763439} a^{5} - \frac{272052450572863}{613260801624093} a^{4} + \frac{14267789314989302}{75431078599763439} a^{3} - \frac{2794370846167419}{8381230955529271} a^{2} + \frac{526314664684712}{75431078599763439} a + \frac{3252658077358330}{8381230955529271}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{312}$, which has order $19968$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |