Normalized defining polynomial
\( x^{16} - 4 x^{13} + x^{12} - 36 x^{11} + 8 x^{10} + 40 x^{9} - 60 x^{8} + 144 x^{7} + 480 x^{6} - 1104 x^{5} + 1156 x^{4} - 400 x^{3} + 32 x^{2} + 32 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7669926418924454281216=2^{40}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{11} + \frac{1}{8} a^{9} - \frac{1}{16} a^{7} + \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{9} + \frac{3}{16} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} + \frac{1}{48} a^{11} - \frac{7}{48} a^{9} + \frac{3}{16} a^{8} - \frac{13}{48} a^{7} - \frac{1}{2} a^{5} - \frac{7}{24} a^{4} + \frac{7}{24} a^{3} - \frac{1}{6} a^{2} - \frac{1}{12} a + \frac{1}{3}$, $\frac{1}{425568} a^{14} + \frac{343}{212784} a^{13} + \frac{2125}{106392} a^{12} - \frac{477}{35464} a^{11} + \frac{9161}{425568} a^{10} - \frac{365}{70928} a^{9} + \frac{1273}{53196} a^{8} + \frac{162}{341} a^{7} - \frac{16967}{35464} a^{6} - \frac{2567}{26598} a^{5} - \frac{311}{9672} a^{4} - \frac{12137}{26598} a^{3} - \frac{6925}{106392} a^{2} + \frac{19373}{53196} a + \frac{5919}{17732}$, $\frac{1}{18201117792} a^{15} - \frac{205}{379189954} a^{14} + \frac{969863}{146783208} a^{13} - \frac{271242497}{9100558896} a^{12} - \frac{40555301}{18201117792} a^{11} - \frac{131138071}{4550279448} a^{10} + \frac{202048151}{1516759816} a^{9} - \frac{1950666149}{9100558896} a^{8} - \frac{1469263795}{9100558896} a^{7} - \frac{103331962}{568784931} a^{6} - \frac{6123224}{189594977} a^{5} - \frac{51979237}{239488392} a^{4} - \frac{78120557}{206830884} a^{3} + \frac{208969351}{568784931} a^{2} + \frac{182156968}{568784931} a + \frac{93998747}{1137569862}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1466729}{827323536} a^{15} - \frac{33491537}{6067039264} a^{14} - \frac{3623613}{3033519632} a^{13} - \frac{38629075}{4550279448} a^{12} + \frac{185351651}{9100558896} a^{11} - \frac{1251120155}{18201117792} a^{10} + \frac{1936563599}{9100558896} a^{9} + \frac{40974053}{568784931} a^{8} - \frac{456355491}{1516759816} a^{7} + \frac{2797107821}{4550279448} a^{6} + \frac{116622269}{758379908} a^{5} - \frac{34631011}{7257224} a^{4} + \frac{1449435893}{189594977} a^{3} - \frac{9695172431}{1516759816} a^{2} + \frac{2620825525}{2275139724} a + \frac{610884499}{758379908} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 179309.222586 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2.D_4$ (as 16T92):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^2.D_4$ |
| Character table for $C_2\times C_2^2.D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |