Normalized defining polynomial
\( x^{16} + 184 x^{14} - 40 x^{13} + 17200 x^{12} - 1040 x^{11} + 1038536 x^{10} + 203000 x^{9} + 43290174 x^{8} + 18874400 x^{7} + 1261661416 x^{6} + 761060200 x^{5} + 24866069920 x^{4} + 15549031600 x^{3} + 297775783704 x^{2} + 129839059720 x + 1625086216321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7657353369870241665908736000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(1027,·)$, $\chi_{4560}(3077,·)$, $\chi_{4560}(3649,·)$, $\chi_{4560}(1483,·)$, $\chi_{4560}(3533,·)$, $\chi_{4560}(911,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(4559,·)$, $\chi_{4560}(797,·)$, $\chi_{4560}(1253,·)$, $\chi_{4560}(2279,·)$, $\chi_{4560}(2281,·)$, $\chi_{4560}(3307,·)$, $\chi_{4560}(3763,·)$, $\chi_{4560}(3191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{24} a^{10} + \frac{1}{24} a^{9} - \frac{1}{12} a^{8} - \frac{1}{4} a^{7} + \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} - \frac{11}{24} a^{2} - \frac{11}{24} a + \frac{1}{6}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} + \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{12} a^{4} - \frac{11}{24} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{11}{24}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{10} + \frac{1}{72} a^{9} + \frac{1}{72} a^{8} + \frac{1}{12} a^{7} + \frac{5}{36} a^{6} - \frac{5}{36} a^{5} + \frac{17}{72} a^{4} - \frac{1}{4} a^{3} + \frac{23}{72} a^{2} + \frac{25}{72} a - \frac{7}{72}$, $\frac{1}{144} a^{13} - \frac{1}{144} a^{12} + \frac{1}{72} a^{11} + \frac{1}{72} a^{10} - \frac{1}{16} a^{9} - \frac{7}{144} a^{8} + \frac{7}{36} a^{7} - \frac{5}{36} a^{6} - \frac{1}{16} a^{5} - \frac{23}{144} a^{4} + \frac{13}{72} a^{3} - \frac{35}{72} a^{2} + \frac{49}{144} a + \frac{31}{144}$, $\frac{1}{325141740144} a^{14} - \frac{513374353}{325141740144} a^{13} - \frac{96513431}{81285435036} a^{12} - \frac{349345309}{20321358759} a^{11} - \frac{3406840103}{325141740144} a^{10} - \frac{14327953631}{325141740144} a^{9} + \frac{6309493051}{54190290024} a^{8} - \frac{3555172975}{40642717518} a^{7} + \frac{169792067}{325141740144} a^{6} - \frac{50055792763}{325141740144} a^{5} + \frac{2372325949}{27095145012} a^{4} + \frac{9852570329}{20321358759} a^{3} - \frac{23749669597}{325141740144} a^{2} - \frac{1142571113}{2778989232} a + \frac{14207844695}{162570870072}$, $\frac{1}{40460783776874861973060312688665291624780278256} a^{15} - \frac{58543515466458308233874265302547137}{40460783776874861973060312688665291624780278256} a^{14} - \frac{305412849174441458330546259448311079334965}{10115195944218715493265078172166322906195069564} a^{13} - \frac{124297109593130221205730459286632794962219273}{20230391888437430986530156344332645812390139128} a^{12} - \frac{63626857791190059957081328970882254586602207}{3112367982836527844081562514512714740367713712} a^{11} + \frac{82130928404339011905422674681187849818201727}{13486927925624953991020104229555097208260092752} a^{10} + \frac{501575790511106006332266359581319689916868907}{20230391888437430986530156344332645812390139128} a^{9} + \frac{2140711554357714544488374343562377572151826763}{20230391888437430986530156344332645812390139128} a^{8} + \frac{701780782873612554910632025306188404189825131}{40460783776874861973060312688665291624780278256} a^{7} - \frac{321826056919025935552418981473483824731815675}{4495642641874984663673368076518365736086697584} a^{6} - \frac{15691411125665019655108063689958231135592375}{10115195944218715493265078172166322906195069564} a^{5} - \frac{3500810634427632082323854761896890644852041923}{20230391888437430986530156344332645812390139128} a^{4} + \frac{745616063788744855729407923096693675590449181}{13486927925624953991020104229555097208260092752} a^{3} - \frac{8217268214779210715802814397204630111492245025}{40460783776874861973060312688665291624780278256} a^{2} + \frac{1501100394546444472565842808501422677309695669}{20230391888437430986530156344332645812390139128} a - \frac{6636509909772154303632328885175387459443263587}{20230391888437430986530156344332645812390139128}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{16}\times C_{16}\times C_{1360}$, which has order $11141120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85299.42553126559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |