Normalized defining polynomial
\( x^{16} - 24 x^{14} - 120 x^{13} + 1632 x^{12} + 6720 x^{11} + 17968 x^{10} - 96600 x^{9} + 213330 x^{8} + 1732800 x^{7} + 24453672 x^{6} + 101274600 x^{5} + 556550752 x^{4} + 1554591360 x^{3} + 5238445584 x^{2} + 8505140040 x + 18803667681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7657353369870241665908736000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(4559,·)$, $\chi_{4560}(4369,·)$, $\chi_{4560}(1747,·)$, $\chi_{4560}(1559,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(2203,·)$, $\chi_{4560}(797,·)$, $\chi_{4560}(1253,·)$, $\chi_{4560}(3307,·)$, $\chi_{4560}(3763,·)$, $\chi_{4560}(2357,·)$, $\chi_{4560}(3191,·)$, $\chi_{4560}(3001,·)$, $\chi_{4560}(2813,·)$, $\chi_{4560}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{360} a^{8} - \frac{1}{9} a^{7} - \frac{4}{45} a^{6} - \frac{4}{9} a^{5} + \frac{1}{90} a^{4} - \frac{4}{9} a^{3} - \frac{2}{15} a^{2} + \frac{1}{3} a + \frac{9}{40}$, $\frac{1}{360} a^{9} + \frac{2}{15} a^{7} - \frac{1}{10} a^{5} - \frac{11}{45} a^{3} - \frac{53}{120} a$, $\frac{1}{360} a^{10} - \frac{1}{6} a^{6} - \frac{1}{9} a^{4} - \frac{3}{8} a^{2} + \frac{1}{5}$, $\frac{1}{360} a^{11} - \frac{1}{6} a^{7} - \frac{1}{9} a^{5} - \frac{3}{8} a^{3} + \frac{1}{5} a$, $\frac{1}{115560} a^{12} - \frac{7}{6420} a^{11} - \frac{37}{115560} a^{10} - \frac{13}{9630} a^{9} + \frac{1}{963} a^{8} + \frac{68}{4815} a^{7} + \frac{709}{5778} a^{6} + \frac{2369}{4815} a^{5} - \frac{9139}{23112} a^{4} - \frac{6437}{19260} a^{3} - \frac{6431}{38520} a^{2} + \frac{607}{3210} a - \frac{1529}{3210}$, $\frac{1}{346680} a^{13} - \frac{1}{346680} a^{12} - \frac{29}{173340} a^{11} - \frac{287}{346680} a^{10} - \frac{49}{38520} a^{9} - \frac{1}{5778} a^{8} - \frac{4346}{43335} a^{7} + \frac{689}{17334} a^{6} + \frac{139261}{346680} a^{5} + \frac{25531}{69336} a^{4} - \frac{127}{1284} a^{3} - \frac{38389}{115560} a^{2} + \frac{7307}{38520} a + \frac{898}{4815}$, $\frac{1}{704752598160} a^{14} - \frac{81791}{176188149540} a^{13} - \frac{72727}{18070579440} a^{12} - \frac{8941117}{44047037385} a^{11} - \frac{474471001}{704752598160} a^{10} - \frac{142522759}{117458766360} a^{9} + \frac{63673273}{140950519632} a^{8} - \frac{282602209}{3388233645} a^{7} - \frac{5957475853}{46983506544} a^{6} + \frac{39588587}{330559380} a^{5} + \frac{105749951347}{704752598160} a^{4} + \frac{1465448753}{14682345795} a^{3} - \frac{105537190607}{234917532720} a^{2} + \frac{2371886593}{13050974040} a + \frac{331946177}{1909898640}$, $\frac{1}{6691545553429149758565249401302320} a^{15} - \frac{474583863695543566589}{3345772776714574879282624700651160} a^{14} - \frac{6397444864225096746381145463}{6691545553429149758565249401302320} a^{13} + \frac{1539133792953185835761913119}{669154555342914975856524940130232} a^{12} - \frac{3903967609353271589660806060553}{6691545553429149758565249401302320} a^{11} - \frac{6250371884128395785691412061}{6253780891055280148191821870376} a^{10} - \frac{431873656177511328453514288037}{1338309110685829951713049880260464} a^{9} + \frac{109738135318478379599805561349}{1672886388357287439641312350325580} a^{8} + \frac{6885479053092291110749148675545}{1338309110685829951713049880260464} a^{7} - \frac{546007680871751335311182594769481}{3345772776714574879282624700651160} a^{6} + \frac{2563306221407788942458982159372277}{6691545553429149758565249401302320} a^{5} - \frac{867936196763451696735717448366861}{3345772776714574879282624700651160} a^{4} + \frac{244134845945563974627053425799771}{743505061492127750951694377922480} a^{3} - \frac{9987045977123771967577047058081}{85789045556783971263657043606440} a^{2} + \frac{322081316079131458150920967443211}{743505061492127750951694377922480} a - \frac{1343094097248169775682653540329}{4533567448122730188729843767820}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{8}\times C_{17760}$, which has order $18186240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1850089.3337810908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.2 | $x^{8} + 14 x^{4} + 4 x^{2} + 8 x + 6$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.2 | $x^{8} + 14 x^{4} + 4 x^{2} + 8 x + 6$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |