Normalized defining polynomial
\( x^{16} - 16 x^{14} - 120 x^{13} + 1140 x^{12} + 4560 x^{11} + 39776 x^{10} + 114000 x^{9} + 1084504 x^{8} + 3528000 x^{7} + 24649056 x^{6} + 64976400 x^{5} + 346620600 x^{4} + 679332960 x^{3} + 2958375744 x^{2} + 3170793600 x + 10158336036 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7657353369870241665908736000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(3077,·)$, $\chi_{4560}(77,·)$, $\chi_{4560}(911,·)$, $\chi_{4560}(4369,·)$, $\chi_{4560}(1747,·)$, $\chi_{4560}(533,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(2203,·)$, $\chi_{4560}(2279,·)$, $\chi_{4560}(2471,·)$, $\chi_{4560}(3307,·)$, $\chi_{4560}(3763,·)$, $\chi_{4560}(3001,·)$, $\chi_{4560}(3533,·)$, $\chi_{4560}(3839,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{24} a^{8} - \frac{1}{4} a^{4} - \frac{1}{6} a^{2} - \frac{1}{4}$, $\frac{1}{72} a^{9} - \frac{5}{12} a^{5} - \frac{1}{18} a^{3} - \frac{5}{12} a$, $\frac{1}{72} a^{10} - \frac{1}{12} a^{6} + \frac{5}{18} a^{4} - \frac{1}{12} a^{2}$, $\frac{1}{72} a^{11} - \frac{1}{12} a^{7} + \frac{5}{18} a^{5} - \frac{1}{12} a^{3}$, $\frac{1}{3240} a^{12} + \frac{1}{1620} a^{11} + \frac{1}{216} a^{10} + \frac{1}{540} a^{9} - \frac{1}{216} a^{8} - \frac{1}{54} a^{7} + \frac{109}{1620} a^{6} - \frac{31}{162} a^{5} + \frac{7}{54} a^{4} + \frac{83}{270} a^{3} + \frac{17}{36} a^{2} - \frac{23}{90} a - \frac{11}{60}$, $\frac{1}{3240} a^{13} + \frac{11}{3240} a^{11} + \frac{7}{1080} a^{10} + \frac{1}{180} a^{9} - \frac{1}{108} a^{8} + \frac{169}{1620} a^{7} - \frac{41}{540} a^{6} + \frac{31}{324} a^{5} - \frac{46}{135} a^{4} - \frac{107}{540} a^{3} + \frac{1}{20} a^{2} - \frac{4}{45} a + \frac{11}{30}$, $\frac{1}{49507753489200} a^{14} - \frac{32475623}{2750430749400} a^{13} + \frac{949522489}{8251292248200} a^{12} + \frac{7680739487}{12376938372300} a^{11} + \frac{13238698067}{4125646124100} a^{10} - \frac{39827012359}{8251292248200} a^{9} - \frac{323233820051}{24753876744600} a^{8} + \frac{21462808721}{687607687350} a^{7} + \frac{238981270913}{8251292248200} a^{6} + \frac{1891051889807}{6188469186150} a^{5} + \frac{3189007447}{38921189850} a^{4} + \frac{217647742751}{1031411531025} a^{3} - \frac{104110480067}{458405124900} a^{2} + \frac{516469758121}{1375215374700} a + \frac{90873943127}{458405124900}$, $\frac{1}{51717612891324269559075340729299728400} a^{15} + \frac{75354229231943409451}{40658500700726627011851682963285950} a^{14} + \frac{299749730880679374280110146643701}{5171761289132426955907534072929972840} a^{13} + \frac{28888928269107350761358491068419}{200455863919861509918896669493409800} a^{12} - \frac{18661309005047299842845004740474213}{8619602148554044926512556788216621400} a^{11} + \frac{10789800315579022002095770688736149}{1723920429710808985302511357643324280} a^{10} + \frac{179108568324107047430177723116986337}{25858806445662134779537670364649864200} a^{9} - \frac{113744625583300361559230115749884}{215490053713851123162813919705415535} a^{8} - \frac{151935005718901299945787549320729223}{1034352257826485391181506814585994568} a^{7} + \frac{231384402350548885486426732602441127}{4309801074277022463256278394108310700} a^{6} + \frac{3949365052543831862268605770427861}{28732007161846816421708522627388738} a^{5} - \frac{349351410761433450224113649121834593}{1436600358092340821085426131369436900} a^{4} + \frac{320404194117144172574853649813273}{26603710335043348538619002432767350} a^{3} - \frac{6166512242664942505690231749383507}{95773357206156054739028408757962460} a^{2} + \frac{177889175511181256483282107060713919}{478866786030780273695142043789812300} a + \frac{17723087726872932111783438347201827}{79811131005130045615857007298302050}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{8}\times C_{60384}$, which has order $15458304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2699811.4861512356 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |