Normalized defining polynomial
\( x^{16} - 24 x^{14} - 200 x^{13} + 1610 x^{12} + 17440 x^{11} + 49484 x^{10} - 260360 x^{9} - 2500161 x^{8} - 5712000 x^{7} + 18651344 x^{6} + 154887560 x^{5} + 398631910 x^{4} + 162402720 x^{3} - 536880324 x^{2} + 1226284920 x + 4488138486 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7657353369870241665908736000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $201.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4560=2^{4}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4560}(1,·)$, $\chi_{4560}(1027,·)$, $\chi_{4560}(3077,·)$, $\chi_{4560}(1483,·)$, $\chi_{4560}(77,·)$, $\chi_{4560}(3533,·)$, $\chi_{4560}(4369,·)$, $\chi_{4560}(4483,·)$, $\chi_{4560}(533,·)$, $\chi_{4560}(1559,·)$, $\chi_{4560}(1369,·)$, $\chi_{4560}(4559,·)$, $\chi_{4560}(3191,·)$, $\chi_{4560}(3001,·)$, $\chi_{4560}(4027,·)$, $\chi_{4560}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{39} a^{10} - \frac{2}{39} a^{9} + \frac{5}{39} a^{8} - \frac{10}{39} a^{7} - \frac{6}{13} a^{6} + \frac{10}{39} a^{5} - \frac{2}{13} a^{4} + \frac{4}{13} a^{3} + \frac{16}{39} a^{2} - \frac{2}{13} a$, $\frac{1}{39} a^{11} + \frac{1}{39} a^{9} + \frac{1}{39} a^{7} + \frac{1}{3} a^{6} + \frac{14}{39} a^{5} + \frac{1}{39} a^{3} - \frac{1}{3} a^{2} - \frac{4}{13} a$, $\frac{1}{39} a^{12} + \frac{2}{39} a^{9} - \frac{4}{39} a^{8} - \frac{16}{39} a^{7} - \frac{7}{39} a^{6} - \frac{10}{39} a^{5} + \frac{7}{39} a^{4} + \frac{14}{39} a^{3} + \frac{11}{39} a^{2} + \frac{2}{13} a$, $\frac{1}{39} a^{13} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{4}{13} a$, $\frac{1}{2769} a^{14} - \frac{23}{2769} a^{13} + \frac{35}{2769} a^{12} + \frac{7}{2769} a^{11} - \frac{20}{2769} a^{10} + \frac{37}{213} a^{9} - \frac{175}{2769} a^{8} + \frac{466}{2769} a^{7} - \frac{356}{923} a^{6} - \frac{1102}{2769} a^{5} - \frac{4}{923} a^{4} - \frac{1225}{2769} a^{3} + \frac{1364}{2769} a^{2} - \frac{413}{923} a - \frac{23}{71}$, $\frac{1}{2003240170935028251669393717192838557232295229090196622001} a^{15} + \frac{30003441058590038997890358306387154129994618028024770}{667746723645009417223131239064279519077431743030065540667} a^{14} + \frac{412668669342002224798510534745947674363079225514238970}{222582241215003139074377079688093173025810581010021846889} a^{13} - \frac{3459666763676748057590446600860650099261855023934293109}{2003240170935028251669393717192838557232295229090196622001} a^{12} - \frac{14530948381482443233210135881748808885503037999510929159}{2003240170935028251669393717192838557232295229090196622001} a^{11} + \frac{30429035083353116762673021899260693634974099762722385}{2003240170935028251669393717192838557232295229090196622001} a^{10} - \frac{432391997081351391366931088427347054306780660972716265650}{2003240170935028251669393717192838557232295229090196622001} a^{9} - \frac{300278363710426337199323409601700631454202139467698301906}{2003240170935028251669393717192838557232295229090196622001} a^{8} + \frac{159594159187239666212915066090394486653722791092206432319}{667746723645009417223131239064279519077431743030065540667} a^{7} + \frac{61099908730064475961763939155429275827899177101584253266}{667746723645009417223131239064279519077431743030065540667} a^{6} - \frac{797697019267704446689324868475693565737265438524071550535}{2003240170935028251669393717192838557232295229090196622001} a^{5} + \frac{965524733582703047301948798750745008114834703519421285021}{2003240170935028251669393717192838557232295229090196622001} a^{4} - \frac{40152072573099193271670481869794265929079133954469361404}{154095397764232942436107209014833735171715017622322817077} a^{3} + \frac{44504379221040510199656048409537554886004456618733132511}{667746723645009417223131239064279519077431743030065540667} a^{2} + \frac{299569153765613430886226480422977971787838691684901772546}{667746723645009417223131239064279519077431743030065540667} a - \frac{7819900771423436091130976651807922640259294852722593985}{17121710862692549159567467668314859463523890846924757453}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}\times C_{8}\times C_{21216}$, which has order $10862592$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 871468.5219091468 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.1 | $x^{8} + 14 x^{4} + 4 x^{2} + 8 x + 22$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.1 | $x^{8} + 14 x^{4} + 4 x^{2} + 8 x + 22$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |