Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} + 48 x^{13} - 514 x^{12} + 2702 x^{11} - 4918 x^{10} + 890 x^{9} + 108574 x^{8} - 400144 x^{7} + 833586 x^{6} + 677858 x^{5} - 3244715 x^{4} + 7513276 x^{3} + 4757904 x^{2} + 102320 x + 42852464 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(764223041656422427087574156640625=5^{8}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{44} a^{8} + \frac{1}{44} a^{7} + \frac{1}{22} a^{6} - \frac{2}{11} a^{5} - \frac{3}{22} a^{4} + \frac{2}{11} a^{3} - \frac{9}{44} a^{2} + \frac{21}{44} a - \frac{5}{22}$, $\frac{1}{44} a^{9} + \frac{1}{44} a^{7} - \frac{5}{22} a^{6} + \frac{1}{22} a^{5} - \frac{2}{11} a^{4} - \frac{17}{44} a^{3} - \frac{7}{22} a^{2} - \frac{9}{44} a + \frac{5}{22}$, $\frac{1}{88} a^{10} - \frac{1}{88} a^{9} - \frac{1}{88} a^{8} - \frac{1}{44} a^{7} + \frac{1}{11} a^{6} - \frac{2}{11} a^{5} + \frac{3}{88} a^{4} - \frac{35}{88} a^{3} - \frac{43}{88} a^{2} + \frac{5}{44} a + \frac{4}{11}$, $\frac{1}{176} a^{11} - \frac{1}{88} a^{9} + \frac{1}{176} a^{8} - \frac{3}{44} a^{7} + \frac{43}{176} a^{5} - \frac{3}{44} a^{4} - \frac{1}{88} a^{3} + \frac{19}{176} a^{2} - \frac{9}{22} a + \frac{9}{44}$, $\frac{1}{880} a^{12} + \frac{1}{440} a^{11} + \frac{1}{220} a^{10} - \frac{9}{880} a^{9} - \frac{1}{110} a^{8} + \frac{13}{110} a^{7} + \frac{19}{880} a^{6} + \frac{9}{88} a^{5} + \frac{3}{22} a^{4} - \frac{131}{880} a^{3} - \frac{47}{220} a^{2} + \frac{41}{220} a + \frac{6}{55}$, $\frac{1}{880} a^{13} + \frac{3}{880} a^{10} - \frac{1}{88} a^{9} - \frac{109}{880} a^{7} + \frac{3}{220} a^{6} - \frac{1}{44} a^{5} - \frac{151}{880} a^{4} - \frac{53}{440} a^{3} + \frac{7}{44} a^{2} - \frac{19}{110} a + \frac{8}{55}$, $\frac{1}{5052080} a^{14} - \frac{527}{5052080} a^{13} + \frac{5}{505208} a^{12} + \frac{1181}{631510} a^{11} + \frac{14319}{5052080} a^{10} - \frac{1715}{252604} a^{9} + \frac{15403}{2526040} a^{8} + \frac{4315}{1010416} a^{7} - \frac{249717}{2526040} a^{6} + \frac{251711}{1263020} a^{5} - \frac{405899}{5052080} a^{4} - \frac{256921}{631510} a^{3} + \frac{1911933}{5052080} a^{2} - \frac{226517}{1263020} a - \frac{44429}{114820}$, $\frac{1}{11409495773457349669993951604167040} a^{15} - \frac{6761104141138400439045961}{570474788672867483499697580208352} a^{14} - \frac{437513905082924199385498603687}{5704747886728674834996975802083520} a^{13} + \frac{158503341267140213501009782645}{570474788672867483499697580208352} a^{12} + \frac{8730493184618208736422803316867}{5704747886728674834996975802083520} a^{11} - \frac{25371803095514184005055896192767}{5704747886728674834996975802083520} a^{10} + \frac{33019339287525545651977850633439}{5704747886728674834996975802083520} a^{9} - \frac{2634970464988593532820763163127}{518613444248061348636088709280320} a^{8} - \frac{617548928978993808110747366939663}{5704747886728674834996975802083520} a^{7} + \frac{83854130785955874208078579412961}{2852373943364337417498487901041760} a^{6} + \frac{316546906335426060489101107577517}{5704747886728674834996975802083520} a^{5} + \frac{1365611185744517723839519107759367}{5704747886728674834996975802083520} a^{4} + \frac{2832036300293788897602696802069}{18858670699929503586766862155648} a^{3} - \frac{780253123447457296790306499240449}{5704747886728674834996975802083520} a^{2} + \frac{36218106285725143876820198428849}{259306722124030674318044354640160} a - \frac{126873730730892470202034539364515}{285237394336433741749848790104176}$
Class group and class number
$C_{65}\times C_{260}$, which has order $16900$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8274413.16122 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{445}) \), \(\Q(\sqrt{5}, \sqrt{89})\), 4.4.704969.1, 4.4.17624225.2, 8.8.310613306850625.1, 8.0.1105783372388225.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.8.7.1 | $x^{8} - 89$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.1 | $x^{8} - 89$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |