Normalized defining polynomial
\( x^{16} - 8 x^{14} - 16 x^{13} + 16 x^{12} + 56 x^{11} + 96 x^{10} - 68 x^{9} - 111 x^{8} + 144 x^{7} + 620 x^{6} + 1028 x^{5} + 980 x^{4} + 568 x^{3} + 212 x^{2} + 52 x + 7 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7638368632008213528576=2^{40}\cdot 3^{10}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{133} a^{14} - \frac{5}{19} a^{13} + \frac{1}{7} a^{11} + \frac{16}{133} a^{10} + \frac{47}{133} a^{9} - \frac{1}{19} a^{8} + \frac{5}{19} a^{7} + \frac{1}{133} a^{6} - \frac{59}{133} a^{5} + \frac{5}{133} a^{4} + \frac{2}{7} a^{3} - \frac{51}{133} a^{2} - \frac{3}{133} a + \frac{1}{19}$, $\frac{1}{103306836138779} a^{15} + \frac{189344810558}{103306836138779} a^{14} - \frac{186913505033}{776743128863} a^{13} + \frac{2649580135245}{5437201902041} a^{12} + \frac{4687256419876}{14758119448397} a^{11} + \frac{2144023521507}{14758119448397} a^{10} + \frac{39070578454220}{103306836138779} a^{9} - \frac{397258329408}{14758119448397} a^{8} + \frac{35514060372162}{103306836138779} a^{7} - \frac{41774200325944}{103306836138779} a^{6} + \frac{44027072664255}{103306836138779} a^{5} - \frac{590538109844}{5437201902041} a^{4} - \frac{40987257553206}{103306836138779} a^{3} - \frac{6153465797673}{103306836138779} a^{2} - \frac{7530388992661}{103306836138779} a + \frac{361540863116}{776743128863}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{940314496}{1509914441} a^{15} + \frac{65166208}{215702063} a^{14} + \frac{1051824008}{215702063} a^{13} + \frac{11420718600}{1509914441} a^{12} - \frac{21036763080}{1509914441} a^{11} - \frac{43046717080}{1509914441} a^{10} - \frac{9694675468}{215702063} a^{9} + \frac{14151004859}{215702063} a^{8} + \frac{60238860400}{1509914441} a^{7} - \frac{172415482660}{1509914441} a^{6} - \frac{500041782908}{1509914441} a^{5} - \frac{714174603932}{1509914441} a^{4} - \frac{545195424280}{1509914441} a^{3} - \frac{231975385804}{1509914441} a^{2} - \frac{8879455212}{215702063} a - \frac{1328450395}{215702063} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119972.966475 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T657):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}) \), 4.0.4032.1, 4.0.1008.2, \(\Q(\sqrt{2}, \sqrt{-3})\), 8.0.260112384.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |