Normalized defining polynomial
\( x^{16} - 6 x^{15} + 18 x^{14} + 686 x^{13} - 5921 x^{12} + 7562 x^{11} + 434923 x^{10} - 5247324 x^{9} + 37570315 x^{8} - 186139766 x^{7} + 764759651 x^{6} - 2968080528 x^{5} + 10962296202 x^{4} - 31677700420 x^{3} + 58389670393 x^{2} - 58470158494 x + 23997286772 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(76304811594430773788792663582199493515169=43^{8}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $359.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{12} a^{3} + \frac{5}{12} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{24} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{6}$, $\frac{1}{24} a^{9} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4} + \frac{3}{8} a^{3} - \frac{1}{12} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{9} - \frac{1}{48} a^{8} - \frac{1}{24} a^{6} - \frac{1}{8} a^{5} - \frac{7}{48} a^{4} + \frac{5}{16} a^{3} - \frac{3}{16} a^{2} + \frac{11}{24} a - \frac{1}{4}$, $\frac{1}{14832} a^{11} + \frac{1}{144} a^{10} - \frac{241}{14832} a^{9} + \frac{79}{7416} a^{8} - \frac{143}{7416} a^{7} + \frac{7}{7416} a^{6} - \frac{1607}{14832} a^{5} - \frac{2393}{14832} a^{4} - \frac{7397}{14832} a^{3} + \frac{179}{1854} a^{2} - \frac{343}{927} a + \frac{265}{1854}$, $\frac{1}{2551104} a^{12} + \frac{5}{318888} a^{11} - \frac{3949}{2551104} a^{10} - \frac{18131}{1275552} a^{9} - \frac{3751}{2551104} a^{8} + \frac{13069}{318888} a^{7} + \frac{188473}{2551104} a^{6} + \frac{31193}{1275552} a^{5} - \frac{258029}{2551104} a^{4} + \frac{60323}{318888} a^{3} + \frac{537437}{2551104} a^{2} - \frac{606911}{1275552} a - \frac{12671}{70864}$, $\frac{1}{22959936} a^{13} + \frac{1}{11479968} a^{12} - \frac{481}{22959936} a^{11} + \frac{2669}{637776} a^{10} + \frac{278393}{22959936} a^{9} - \frac{120179}{11479968} a^{8} - \frac{108863}{22959936} a^{7} + \frac{34247}{1913328} a^{6} - \frac{439997}{22959936} a^{5} + \frac{716993}{11479968} a^{4} + \frac{10037273}{22959936} a^{3} + \frac{811823}{1913328} a^{2} + \frac{41393}{106296} a - \frac{231799}{2869992}$, $\frac{1}{79165859328} a^{14} + \frac{1085}{79165859328} a^{13} - \frac{1073}{9895732416} a^{12} - \frac{21565}{26388619776} a^{11} + \frac{350594881}{39582929664} a^{10} - \frac{706549129}{79165859328} a^{9} + \frac{796361111}{39582929664} a^{8} + \frac{57234511}{8796206592} a^{7} + \frac{1091531945}{39582929664} a^{6} + \frac{16437183625}{79165859328} a^{5} + \frac{1969708403}{19791464832} a^{4} - \frac{3410304215}{26388619776} a^{3} + \frac{930097853}{2932068864} a^{2} + \frac{5034771407}{39582929664} a - \frac{1528467857}{6597154944}$, $\frac{1}{66718204745448418004517559137453528576} a^{15} - \frac{402028774509434475585890437}{66718204745448418004517559137453528576} a^{14} + \frac{347373286293836732915840689823}{33359102372724209002258779568726764288} a^{13} - \frac{9100350473949716082234273040175}{66718204745448418004517559137453528576} a^{12} - \frac{28105763190575447317380786077087}{1389962598863508708427449148696948512} a^{11} + \frac{469729273844108900101888614087440699}{66718204745448418004517559137453528576} a^{10} - \frac{31399692797855041197213230396095135}{4169887796590526125282347446090845536} a^{9} + \frac{1326062975268264293643930163299102979}{66718204745448418004517559137453528576} a^{8} + \frac{43616232693822915094666860078112297}{1853283465151344944569932198262598016} a^{7} + \frac{1797751696058339987609832540950836957}{66718204745448418004517559137453528576} a^{6} + \frac{1367712526777047878270233396811665589}{33359102372724209002258779568726764288} a^{5} + \frac{11960589831152412031202002522411108139}{66718204745448418004517559137453528576} a^{4} - \frac{28234065738238308175072194848921152295}{66718204745448418004517559137453528576} a^{3} - \frac{1893509095534632052401788361434168881}{8339775593181052250564694892181691072} a^{2} - \frac{4347095828397520238322986759664451}{926641732575672472284966099131299008} a - \frac{3833724987871051925238859571486830913}{8339775593181052250564694892181691072}$
Class group and class number
$C_{4}\times C_{4}\times C_{2720}$, which has order $43520$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29102662061.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |