Normalized defining polynomial
\( x^{16} + 42 x^{14} - 15 x^{13} + 1066 x^{12} + 170 x^{11} + 13121 x^{10} - 9895 x^{9} + 67004 x^{8} - 117105 x^{7} + 316503 x^{6} - 423225 x^{5} + 509814 x^{4} - 335340 x^{3} + 172044 x^{2} - 32805 x + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7612724592276900293212890625=5^{12}\cdot 89^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{2}{9} a^{3} - \frac{1}{18} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{54} a^{11} - \frac{1}{18} a^{9} + \frac{2}{9} a^{8} - \frac{7}{27} a^{7} - \frac{19}{54} a^{6} - \frac{19}{54} a^{5} - \frac{11}{27} a^{4} - \frac{19}{54} a^{3} - \frac{5}{18} a^{2} - \frac{1}{2} a$, $\frac{1}{162} a^{12} - \frac{1}{54} a^{10} + \frac{2}{27} a^{9} - \frac{7}{81} a^{8} + \frac{35}{162} a^{7} - \frac{19}{162} a^{6} - \frac{11}{81} a^{5} + \frac{35}{162} a^{4} - \frac{23}{54} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{486} a^{13} - \frac{1}{162} a^{11} + \frac{2}{81} a^{10} - \frac{7}{243} a^{9} + \frac{35}{486} a^{8} - \frac{19}{486} a^{7} - \frac{92}{243} a^{6} + \frac{35}{486} a^{5} - \frac{77}{162} a^{4} + \frac{5}{18} a^{3} - \frac{1}{3} a$, $\frac{1}{1458} a^{14} - \frac{1}{486} a^{12} + \frac{2}{243} a^{11} - \frac{7}{729} a^{10} + \frac{35}{1458} a^{9} - \frac{505}{1458} a^{8} - \frac{92}{729} a^{7} + \frac{521}{1458} a^{6} + \frac{85}{486} a^{5} + \frac{5}{54} a^{4} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{124209768938047084361278564862814} a^{15} - \frac{306914728398093640341152212}{6900542718780393575626586936823} a^{14} - \frac{6786431277908978772470963630}{20701628156341180726879760810469} a^{13} + \frac{252458443836658629393219020}{20701628156341180726879760810469} a^{12} + \frac{187155285809761594841863445642}{62104884469023542180639282431407} a^{11} - \frac{1054292871930328674589295639845}{124209768938047084361278564862814} a^{10} - \frac{1183256043727190378449662162950}{62104884469023542180639282431407} a^{9} - \frac{57141175958159238058591901944687}{124209768938047084361278564862814} a^{8} - \frac{29269862886213938245015892389928}{62104884469023542180639282431407} a^{7} + \frac{6494241042195297499819958004947}{20701628156341180726879760810469} a^{6} + \frac{5587763092345098887861937860317}{13801085437560787151253173873646} a^{5} - \frac{597671603332155168089614744435}{1533453937506754127917019319294} a^{4} + \frac{29932584769939110135580640891}{85191885417041895995389962183} a^{3} - \frac{59692990020246738038578959595}{170383770834083791990779924366} a^{2} + \frac{28294570781379188180759792189}{170383770834083791990779924366} a - \frac{13279490820281927175334042788}{28397295139013965331796654061}$
Class group and class number
$C_{740}$, which has order $740$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24104.2464739 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 4.0.990125.2, 4.0.11125.1, 8.0.3490037155625.1, 8.8.11015140625.1, 8.0.980347515625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $89$ | 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.8.4.1 | $x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |