Normalized defining polynomial
\( x^{16} - 5 x^{15} - 10 x^{14} + 6 x^{13} + 436 x^{12} + 1665 x^{11} - 7659 x^{10} - 62838 x^{9} + 98681 x^{8} + 843231 x^{7} - 489347 x^{6} - 5502447 x^{5} + 850907 x^{4} + 7824574 x^{3} + 10797536 x^{2} + 22364064 x + 21492496 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7612724592276900293212890625=5^{12}\cdot 89^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6868} a^{14} - \frac{1145}{6868} a^{13} - \frac{125}{3434} a^{12} - \frac{477}{3434} a^{11} - \frac{28}{1717} a^{10} - \frac{315}{6868} a^{9} + \frac{1933}{6868} a^{8} + \frac{1489}{3434} a^{7} - \frac{3027}{6868} a^{6} + \frac{2643}{6868} a^{5} + \frac{2089}{6868} a^{4} + \frac{197}{404} a^{3} + \frac{2895}{6868} a^{2} + \frac{1443}{3434} a - \frac{395}{1717}$, $\frac{1}{119246978691402969154046126386677565246568588142219464} a^{15} - \frac{2049210182834512166267316985821952675957525710175}{119246978691402969154046126386677565246568588142219464} a^{14} + \frac{2267981176569797554678501601218307751733816798088403}{29811744672850742288511531596669391311642147035554866} a^{13} + \frac{12883244569241073107307645169020931199583978692622473}{59623489345701484577023063193338782623284294071109732} a^{12} + \frac{1970498154272881415995244738208106885492104049512278}{14905872336425371144255765798334695655821073517777433} a^{11} - \frac{14660183095609088797670209916069346481272841859891487}{119246978691402969154046126386677565246568588142219464} a^{10} - \frac{20179990190257133793071951047671753102174887895014181}{119246978691402969154046126386677565246568588142219464} a^{9} - \frac{4633240735275853000079154176037011049902294554965328}{14905872336425371144255765798334695655821073517777433} a^{8} + \frac{17661310571143043595201783621527900147727527289696593}{119246978691402969154046126386677565246568588142219464} a^{7} + \frac{8280412153459224815371366681606502875543573949995937}{119246978691402969154046126386677565246568588142219464} a^{6} + \frac{51574608966883351327222442596087336239747405821267231}{119246978691402969154046126386677565246568588142219464} a^{5} + \frac{1831530832543536350477344493096695591615365130473767}{7014528158317821714943889787451621485092269890718792} a^{4} - \frac{17649357902048480540797326436796256008470590148499691}{119246978691402969154046126386677565246568588142219464} a^{3} - \frac{7783378692633552679349914456157658532959401036795005}{29811744672850742288511531596669391311642147035554866} a^{2} - \frac{11685653376303458510881057963629894007687123688865}{147582894420053179646096691072620749067535381364133} a - \frac{204298616480008133555530553441159027244896757434}{756528058489842721628978622460269789160080876911}$
Class group and class number
$C_{2}\times C_{74}$, which has order $148$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5982196028234438103099283120943453919873213}{295165788840106359292193382145241498135070762728266} a^{15} + \frac{2303038459360479791551991278155191625947165}{8681346730591363508593923004271808768678551844949} a^{14} - \frac{53397173065855368309403897798563952793372659}{147582894420053179646096691072620749067535381364133} a^{13} - \frac{570027512391785001266011190414155149731512343}{295165788840106359292193382145241498135070762728266} a^{12} - \frac{1744220727618072643627606293088840545395956858}{147582894420053179646096691072620749067535381364133} a^{11} + \frac{6552403694847433761659062166452814528631025565}{295165788840106359292193382145241498135070762728266} a^{10} + \frac{71360372536106119497466180086544258804572854222}{147582894420053179646096691072620749067535381364133} a^{9} + \frac{108562081594727880154674942849575658545811978868}{147582894420053179646096691072620749067535381364133} a^{8} - \frac{98265551003440584831676956667089185458423935563}{8681346730591363508593923004271808768678551844949} a^{7} - \frac{2161998195249059060327984560621264697887191759894}{147582894420053179646096691072620749067535381364133} a^{6} + \frac{32505967888688948609844637604473416430943738300043}{295165788840106359292193382145241498135070762728266} a^{5} + \frac{35744168158983109572752470824982736686535016967839}{295165788840106359292193382145241498135070762728266} a^{4} - \frac{155061671848828763118921711888951190021318304365625}{295165788840106359292193382145241498135070762728266} a^{3} + \frac{9635786861809997863181515086988366030490173233851}{147582894420053179646096691072620749067535381364133} a^{2} - \frac{24972366873777950664956511190789283556410903259775}{295165788840106359292193382145241498135070762728266} a - \frac{111965119672874336973007233813434372945618232809}{127336405884428972947451847344797885304172028787} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 505489.246116 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, \(\Q(\zeta_{5})\), 4.0.11125.1, 8.0.3490037155625.1, 8.8.87250928890625.1, 8.0.123765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $89$ | 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.8.6.2 | $x^{8} + 979 x^{4} + 285156$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |