Properties

Label 16.0.76127245922...625.16
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 89^{10}$
Root discriminant $55.28$
Ramified primes $5, 89$
Class number $20$ (GRH)
Class group $[20]$ (GRH)
Galois group $(C_2\times C_4).D_4$ (as 16T121)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![950771, -1486072, 1885989, -1837696, 1471135, -1009634, 610374, -314240, 150277, -56654, 21596, -5688, 1682, -290, 66, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 66*x^14 - 290*x^13 + 1682*x^12 - 5688*x^11 + 21596*x^10 - 56654*x^9 + 150277*x^8 - 314240*x^7 + 610374*x^6 - 1009634*x^5 + 1471135*x^4 - 1837696*x^3 + 1885989*x^2 - 1486072*x + 950771)
 
gp: K = bnfinit(x^16 - 6*x^15 + 66*x^14 - 290*x^13 + 1682*x^12 - 5688*x^11 + 21596*x^10 - 56654*x^9 + 150277*x^8 - 314240*x^7 + 610374*x^6 - 1009634*x^5 + 1471135*x^4 - 1837696*x^3 + 1885989*x^2 - 1486072*x + 950771, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 66 x^{14} - 290 x^{13} + 1682 x^{12} - 5688 x^{11} + 21596 x^{10} - 56654 x^{9} + 150277 x^{8} - 314240 x^{7} + 610374 x^{6} - 1009634 x^{5} + 1471135 x^{4} - 1837696 x^{3} + 1885989 x^{2} - 1486072 x + 950771 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7612724592276900293212890625=5^{12}\cdot 89^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{17320767579482546034598676076308364292078} a^{15} + \frac{1700269679071807741529208417468492207727}{17320767579482546034598676076308364292078} a^{14} + \frac{1399629973455490106101911717779550780289}{17320767579482546034598676076308364292078} a^{13} - \frac{3081975262204553118770856057400864469679}{17320767579482546034598676076308364292078} a^{12} - \frac{1607140576549256428140828188951543446827}{17320767579482546034598676076308364292078} a^{11} + \frac{485598937153080388866266361763091810521}{8660383789741273017299338038154182146039} a^{10} - \frac{3713549600725892060318196409584563292637}{17320767579482546034598676076308364292078} a^{9} - \frac{3496182061715516258201536828855261784935}{17320767579482546034598676076308364292078} a^{8} - \frac{8408069296188259786954991845385475668045}{17320767579482546034598676076308364292078} a^{7} + \frac{3323176110932515504726032347518421880935}{8660383789741273017299338038154182146039} a^{6} + \frac{6163702318468456115141952965633215583213}{17320767579482546034598676076308364292078} a^{5} - \frac{2195023127931251380335150815011652875625}{8660383789741273017299338038154182146039} a^{4} + \frac{820906938507957164764930392941365307794}{8660383789741273017299338038154182146039} a^{3} - \frac{843529608566906643531340326946213688974}{8660383789741273017299338038154182146039} a^{2} - \frac{887907166984581176101446863663125579663}{17320767579482546034598676076308364292078} a - \frac{10015266434581737517893995309410310955}{21596967056711404033165431516593970439}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{20}$, which has order $20$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1010978.49223 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2\times C_4).D_4$ (as 16T121):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $(C_2\times C_4).D_4$
Character table for $(C_2\times C_4).D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 4.0.990125.2, 4.0.11125.1, 8.0.440605625.1, 8.8.87250928890625.1, 8.0.980347515625.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$89$89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
89.4.3.3$x^{4} + 267$$4$$1$$3$$C_4$$[\ ]_{4}$
89.8.4.1$x^{8} + 427734 x^{4} - 704969 x^{2} + 45739093689$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$