Normalized defining polynomial
\( x^{16} + 952 x^{14} + 323204 x^{12} + 51499392 x^{10} + 4085046994 x^{8} + 152944237824 x^{6} + 2124099047056 x^{4} + 2592170770112 x^{2} + 1568025872 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(76098811128269790757290873194547302704873472=2^{62}\cdot 7^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $552.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3808=2^{5}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3808}(1,·)$, $\chi_{3808}(3779,·)$, $\chi_{3808}(2185,·)$, $\chi_{3808}(1931,·)$, $\chi_{3808}(2129,·)$, $\chi_{3808}(729,·)$, $\chi_{3808}(1371,·)$, $\chi_{3808}(2995,·)$, $\chi_{3808}(1121,·)$, $\chi_{3808}(1763,·)$, $\chi_{3808}(1707,·)$, $\chi_{3808}(2801,·)$, $\chi_{3808}(2547,·)$, $\chi_{3808}(2267,·)$, $\chi_{3808}(841,·)$, $\chi_{3808}(2297,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{4802} a^{8}$, $\frac{1}{4802} a^{9}$, $\frac{1}{638666} a^{10} + \frac{1}{91238} a^{8} - \frac{9}{6517} a^{6} + \frac{4}{931} a^{4} + \frac{4}{133} a^{2} + \frac{4}{19}$, $\frac{1}{1277332} a^{11} - \frac{9}{91238} a^{9} + \frac{5}{6517} a^{7} + \frac{2}{931} a^{5} - \frac{15}{266} a^{3} + \frac{2}{19} a$, $\frac{1}{8941324} a^{12} - \frac{3}{6517} a^{6} - \frac{1}{98} a^{4} - \frac{2}{19}$, $\frac{1}{8941324} a^{13} - \frac{3}{6517} a^{7} - \frac{1}{98} a^{5} - \frac{2}{19} a$, $\frac{1}{201701349261341964600386296} a^{14} + \frac{108536148243301195}{14407239232952997471456164} a^{12} + \frac{625639879184124041}{1029088516639499819389726} a^{10} - \frac{3803800113127727222}{73506322617107129956409} a^{8} - \frac{6679909987014406403}{42003612924061217117948} a^{6} - \frac{28421739694464063657}{3000258066004372651282} a^{4} + \frac{1496127638097600686}{30614878224534414809} a^{2} + \frac{14152487020840781060}{30614878224534414809}$, $\frac{1}{201701349261341964600386296} a^{15} + \frac{108536148243301195}{14407239232952997471456164} a^{13} - \frac{360029621870405329}{2058177033278999638779452} a^{11} + \frac{6894184195892426255}{147012645234214259912818} a^{9} - \frac{38906097591787474623}{42003612924061217117948} a^{7} + \frac{26362779233650152317}{3000258066004372651282} a^{5} - \frac{16114328812122618849}{428608295143481807326} a^{3} + \frac{10929868260363474238}{30614878224534414809} a$
Class group and class number
$C_{2}\times C_{2}\times C_{306101384}$, which has order $1224405536$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11854712.241874253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.314432.1, 8.8.1721085137518592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.85 | $x^{8} + 24 x^{6} + 12 x^{4} + 10$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.85 | $x^{8} + 24 x^{6} + 12 x^{4} + 10$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||