Normalized defining polynomial
\( x^{16} - 4 x^{15} + 44 x^{14} - 224 x^{13} + 1224 x^{12} - 4236 x^{11} + 16008 x^{10} - 42732 x^{9} + 116061 x^{8} - 243740 x^{7} + 504548 x^{6} - 792892 x^{5} + 1171864 x^{4} - 1295280 x^{3} + 1278140 x^{2} - 673492 x + 153991 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7608796557869056000000000000=2^{44}\cdot 5^{12}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{68367805946675110161113635894796798885388461} a^{15} + \frac{22311134184944255892278725783787552876947203}{68367805946675110161113635894796798885388461} a^{14} - \frac{16917434794050577972571712159016508963967552}{68367805946675110161113635894796798885388461} a^{13} - \frac{2990440813933479666954954903665570823057036}{68367805946675110161113635894796798885388461} a^{12} + \frac{11390358390259034407606223127751866966059983}{68367805946675110161113635894796798885388461} a^{11} - \frac{909853631947167399323655898154499349619492}{68367805946675110161113635894796798885388461} a^{10} - \frac{14544083684970836266602806616629576670141856}{68367805946675110161113635894796798885388461} a^{9} + \frac{20356690031467831119138846372721396013877752}{68367805946675110161113635894796798885388461} a^{8} + \frac{831946928386576597869788422646996053429571}{68367805946675110161113635894796798885388461} a^{7} + \frac{32342621658897824007337550112854089803060180}{68367805946675110161113635894796798885388461} a^{6} - \frac{9098210643245111409357531165282757055492600}{68367805946675110161113635894796798885388461} a^{5} + \frac{20881298188215342492259280678015514071397011}{68367805946675110161113635894796798885388461} a^{4} - \frac{3064428354423072981215059154622865295315898}{68367805946675110161113635894796798885388461} a^{3} + \frac{23003846424859925278778621820530086854850853}{68367805946675110161113635894796798885388461} a^{2} - \frac{27063109756504972077089966632325047566369859}{68367805946675110161113635894796798885388461} a + \frac{21019748581472643680076289979458764578128941}{68367805946675110161113635894796798885388461}$
Class group and class number
$C_{2}\times C_{20}\times C_{20}$, which has order $800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17367.3059334 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$SD_{16}:C_2$ (as 16T32):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $SD_{16}:C_2$ |
| Character table for $SD_{16}:C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.4.4400.1, 4.4.17600.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.4956160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |