Normalized defining polynomial
\( x^{16} - 3 x^{15} - 5 x^{14} + 2 x^{13} + 78 x^{12} - 30 x^{11} - 224 x^{10} - 384 x^{9} + 1120 x^{8} + 682 x^{7} - 1206 x^{6} - 1930 x^{5} + 1543 x^{4} + 1899 x^{3} - 2115 x^{2} - 324 x + 1296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(76060599125298737496849=3^{8}\cdot 23^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{12} a$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{4} + \frac{1}{6} a$, $\frac{1}{48} a^{11} + \frac{1}{48} a^{8} + \frac{1}{6} a^{6} + \frac{11}{48} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{7}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{240} a^{12} + \frac{1}{240} a^{9} + \frac{7}{48} a^{6} - \frac{1}{6} a^{4} + \frac{67}{240} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{2}{5}$, $\frac{1}{2640} a^{13} - \frac{1}{660} a^{12} - \frac{1}{132} a^{11} - \frac{59}{2640} a^{10} + \frac{7}{330} a^{9} - \frac{1}{44} a^{8} - \frac{7}{176} a^{7} + \frac{1}{12} a^{6} + \frac{19}{132} a^{5} - \frac{51}{880} a^{4} - \frac{53}{165} a^{3} - \frac{17}{44} a^{2} - \frac{17}{220} a - \frac{13}{55}$, $\frac{1}{15840} a^{14} - \frac{7}{7920} a^{12} + \frac{13}{7920} a^{11} - \frac{1}{88} a^{10} + \frac{31}{2640} a^{9} - \frac{31}{792} a^{8} - \frac{7}{264} a^{7} + \frac{247}{1584} a^{6} + \frac{1151}{7920} a^{5} - \frac{17}{264} a^{4} - \frac{809}{7920} a^{3} + \frac{2371}{15840} a^{2} - \frac{13}{264} a - \frac{21}{110}$, $\frac{1}{73038240} a^{15} + \frac{13}{1623072} a^{14} - \frac{185}{7303824} a^{13} - \frac{3734}{2282445} a^{12} - \frac{2137}{304326} a^{11} - \frac{92689}{2434608} a^{10} + \frac{635693}{36519120} a^{9} + \frac{94451}{2434608} a^{8} + \frac{103855}{7303824} a^{7} + \frac{283466}{2282445} a^{6} + \frac{62687}{304326} a^{5} + \frac{1429367}{7303824} a^{4} - \frac{21415787}{73038240} a^{3} - \frac{1132237}{4869216} a^{2} - \frac{16547}{135256} a + \frac{9073}{169070}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2801}{2434608} a^{15} + \frac{12403}{24346080} a^{14} + \frac{129149}{12173040} a^{13} + \frac{10713}{676280} a^{12} - \frac{812291}{12173040} a^{11} - \frac{53957}{368880} a^{10} + \frac{202093}{1521630} a^{9} + \frac{231707}{304326} a^{8} + \frac{327289}{2434608} a^{7} - \frac{2390081}{1217304} a^{6} - \frac{9618577}{12173040} a^{5} + \frac{23142793}{12173040} a^{4} + \frac{7817551}{4057680} a^{3} - \frac{68422667}{24346080} a^{2} - \frac{276027}{676280} a + \frac{456557}{169070} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 561593.849789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{69}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-3}, \sqrt{-23})\), 4.2.109503.1 x2, 4.0.36501.1 x2, 8.0.11990907009.1, 8.2.275790861207.1 x4, 8.0.91930287069.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23 | Data not computed | ||||||