Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} + 16 x^{13} - 32 x^{12} - 8 x^{11} + 116 x^{10} - 412 x^{9} + 1002 x^{8} - 784 x^{7} - 724 x^{6} + 1024 x^{5} + 1459 x^{4} - 3764 x^{3} + 3748 x^{2} - 1840 x + 529 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(760294709821440000000000=2^{24}\cdot 3^{8}\cdot 5^{10}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{1}{10}$, $\frac{1}{10} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{6} - \frac{1}{10} a^{4} - \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{50} a^{11} + \frac{1}{50} a^{10} - \frac{1}{50} a^{9} + \frac{1}{50} a^{8} + \frac{4}{25} a^{7} + \frac{3}{25} a^{6} - \frac{1}{2} a^{5} + \frac{19}{50} a^{4} + \frac{3}{25} a^{3} - \frac{11}{25} a^{2} - \frac{3}{10} a + \frac{19}{50}$, $\frac{1}{50} a^{12} - \frac{1}{25} a^{10} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{4}{25} a^{7} + \frac{9}{50} a^{6} - \frac{3}{25} a^{5} + \frac{17}{50} a^{4} + \frac{6}{25} a^{3} + \frac{11}{25} a^{2} - \frac{3}{25} a - \frac{7}{25}$, $\frac{1}{11950} a^{13} - \frac{67}{11950} a^{12} + \frac{1}{2390} a^{11} + \frac{219}{5975} a^{10} + \frac{43}{5975} a^{9} + \frac{461}{11950} a^{8} + \frac{5169}{11950} a^{7} - \frac{4297}{11950} a^{6} + \frac{2047}{5975} a^{5} + \frac{5481}{11950} a^{4} - \frac{87}{2390} a^{3} - \frac{319}{11950} a^{2} + \frac{1889}{5975} a - \frac{3349}{11950}$, $\frac{1}{657250} a^{14} + \frac{2}{328625} a^{13} - \frac{329}{131450} a^{12} + \frac{516}{328625} a^{11} - \frac{3528}{328625} a^{10} + \frac{11051}{328625} a^{9} + \frac{14409}{328625} a^{8} - \frac{16023}{65725} a^{7} + \frac{133077}{328625} a^{6} + \frac{136964}{328625} a^{5} - \frac{217149}{657250} a^{4} - \frac{151593}{328625} a^{3} - \frac{40867}{131450} a^{2} - \frac{160689}{328625} a + \frac{106859}{657250}$, $\frac{1}{2191928750} a^{15} - \frac{1}{43838575} a^{14} + \frac{45659}{2191928750} a^{13} + \frac{8574661}{1095964375} a^{12} + \frac{4898478}{1095964375} a^{11} - \frac{91343749}{2191928750} a^{10} + \frac{6415144}{219192875} a^{9} - \frac{736321}{1095964375} a^{8} - \frac{29637138}{1095964375} a^{7} - \frac{547847144}{1095964375} a^{6} + \frac{1056966369}{2191928750} a^{5} - \frac{137506827}{438385750} a^{4} + \frac{645148699}{2191928750} a^{3} - \frac{573742973}{2191928750} a^{2} - \frac{37777869}{2191928750} a + \frac{1706614}{47650625}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58897.8835353 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T210):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{30}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{5}, \sqrt{6})\), 4.0.6525.1, 4.0.46400.1, 8.4.30067200000.1, 8.4.30067200000.3, 8.0.174389760000.15 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |