Normalized defining polynomial
\( x^{16} + 1020 x^{14} + 313650 x^{12} + 42687000 x^{10} + 2809080000 x^{8} + 87783750000 x^{6} + 1290421125000 x^{4} + 7900537500000 x^{2} + 11850806250000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7591625588243699460514311988838400000000=2^{44}\cdot 3^{8}\cdot 5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $310.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(389,·)$, $\chi_{4080}(2401,·)$, $\chi_{4080}(1801,·)$, $\chi_{4080}(3629,·)$, $\chi_{4080}(3481,·)$, $\chi_{4080}(3841,·)$, $\chi_{4080}(2909,·)$, $\chi_{4080}(3749,·)$, $\chi_{4080}(1441,·)$, $\chi_{4080}(869,·)$, $\chi_{4080}(361,·)$, $\chi_{4080}(1709,·)$, $\chi_{4080}(1589,·)$, $\chi_{4080}(2041,·)$, $\chi_{4080}(2429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{15} a^{2}$, $\frac{1}{15} a^{3}$, $\frac{1}{450} a^{4}$, $\frac{1}{450} a^{5}$, $\frac{1}{6750} a^{6}$, $\frac{1}{6750} a^{7}$, $\frac{1}{3442500} a^{8}$, $\frac{1}{3442500} a^{9}$, $\frac{1}{51637500} a^{10}$, $\frac{1}{51637500} a^{11}$, $\frac{1}{161109000000} a^{12} - \frac{1}{167821875} a^{10} - \frac{1}{22376250} a^{8} + \frac{1}{70200} a^{6} - \frac{1}{975} a^{4} - \frac{1}{195} a^{2} - \frac{23}{104}$, $\frac{1}{161109000000} a^{13} - \frac{1}{167821875} a^{11} - \frac{1}{22376250} a^{9} + \frac{1}{70200} a^{7} - \frac{1}{975} a^{5} - \frac{1}{195} a^{3} - \frac{23}{104} a$, $\frac{1}{215080515000000} a^{14} - \frac{29}{14338701000000} a^{12} + \frac{313}{59744587500} a^{10} - \frac{757}{7965945000} a^{8} + \frac{47}{31239000} a^{6} + \frac{37}{260325} a^{4} - \frac{823}{138840} a^{2} - \frac{285}{9256}$, $\frac{1}{215080515000000} a^{15} - \frac{29}{14338701000000} a^{13} + \frac{313}{59744587500} a^{11} - \frac{757}{7965945000} a^{9} + \frac{47}{31239000} a^{7} + \frac{37}{260325} a^{5} - \frac{823}{138840} a^{3} - \frac{285}{9256} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2423618}$, which has order $155111552$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103646.40189541418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 4.4.314432.1, 4.4.4913.1, 8.8.98867482624.1, 8.0.87129935086878720000.1, 8.0.87129935086878720000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.5 | $x^{8} + 10 x^{4} + 16 x + 36$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.5 | $x^{8} + 10 x^{4} + 16 x + 36$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |