Normalized defining polynomial
\( x^{16} + 40 x^{14} - 24 x^{13} + 632 x^{12} - 840 x^{11} + 5176 x^{10} - 9716 x^{9} + 28019 x^{8} - 50784 x^{7} + 109376 x^{6} - 170828 x^{5} + 270644 x^{4} - 318432 x^{3} + 344084 x^{2} - 294108 x + 212321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(758534442582016000000000000=2^{40}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{205} a^{14} - \frac{4}{41} a^{13} + \frac{12}{205} a^{12} + \frac{14}{205} a^{11} - \frac{28}{205} a^{10} + \frac{1}{205} a^{9} + \frac{43}{205} a^{8} - \frac{57}{205} a^{7} - \frac{28}{205} a^{6} - \frac{16}{41} a^{5} - \frac{8}{41} a^{4} - \frac{37}{205} a^{3} - \frac{54}{205} a^{2} - \frac{2}{205} a - \frac{42}{205}$, $\frac{1}{2752262742865537974498798490461721645} a^{15} - \frac{831540337129481978983413418575424}{550452548573107594899759698092344329} a^{14} + \frac{65002843185534472226056327622817812}{2752262742865537974498798490461721645} a^{13} - \frac{221448881864030671411372528137989169}{2752262742865537974498798490461721645} a^{12} + \frac{1103748067155543855738126221984624864}{2752262742865537974498798490461721645} a^{11} - \frac{1318287725645401267495653275893275304}{2752262742865537974498798490461721645} a^{10} - \frac{85527074319292702670263357667345159}{550452548573107594899759698092344329} a^{9} - \frac{1013647899721259768286903319815990536}{2752262742865537974498798490461721645} a^{8} - \frac{58537512352238385810988782508605766}{2752262742865537974498798490461721645} a^{7} + \frac{158837087843133051000047709794615930}{550452548573107594899759698092344329} a^{6} - \frac{88925935664480514934004423004907017}{550452548573107594899759698092344329} a^{5} - \frac{1109410297500854309312069111453782763}{2752262742865537974498798490461721645} a^{4} + \frac{15810816600551356899715036937896124}{550452548573107594899759698092344329} a^{3} - \frac{57003540032134913197539901178602863}{550452548573107594899759698092344329} a^{2} - \frac{1374705959298936407405531507849892961}{2752262742865537974498798490461721645} a - \frac{862585372007064018619597641303023}{11420177356288539313273022781998845}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{92}$, which has order $736$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||