Properties

Label 16.0.75810861054...6081.2
Degree $16$
Signature $[0, 8]$
Discriminant $13^{4}\cdot 61^{12}$
Root discriminant $41.45$
Ramified primes $13, 61$
Class number $9$ (GRH)
Class group $[9]$ (GRH)
Galois group $C_2\wr C_4$ (as 16T158)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![105625, 0, 110175, 0, 46836, 0, 1137, 0, 2567, 0, 321, 0, 36, 0, 3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 3*x^14 + 36*x^12 + 321*x^10 + 2567*x^8 + 1137*x^6 + 46836*x^4 + 110175*x^2 + 105625)
 
gp: K = bnfinit(x^16 + 3*x^14 + 36*x^12 + 321*x^10 + 2567*x^8 + 1137*x^6 + 46836*x^4 + 110175*x^2 + 105625, 1)
 

Normalized defining polynomial

\( x^{16} + 3 x^{14} + 36 x^{12} + 321 x^{10} + 2567 x^{8} + 1137 x^{6} + 46836 x^{4} + 110175 x^{2} + 105625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(75810861054913358267806081=13^{4}\cdot 61^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{5} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} - \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{78} a^{12} + \frac{1}{78} a^{10} - \frac{5}{78} a^{8} + \frac{1}{13} a^{6} + \frac{7}{78} a^{4} - \frac{1}{2} a^{3} + \frac{31}{78} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{390} a^{13} - \frac{2}{65} a^{11} + \frac{7}{130} a^{9} + \frac{1}{65} a^{7} - \frac{1}{2} a^{6} + \frac{7}{390} a^{5} - \frac{1}{2} a^{4} + \frac{19}{130} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a$, $\frac{1}{646580926471350} a^{14} - \frac{643087314497}{646580926471350} a^{12} - \frac{1574479325269}{107763487745225} a^{10} + \frac{13763712985148}{323290463235675} a^{8} + \frac{157061610118117}{646580926471350} a^{6} - \frac{256923213355163}{646580926471350} a^{4} - \frac{1}{2} a^{3} - \frac{20217576911469}{107763487745225} a^{2} + \frac{894931218217}{1989479773758}$, $\frac{1}{42027760220637750} a^{15} + \frac{10838302971601}{14009253406879250} a^{13} + \frac{1640163436456061}{42027760220637750} a^{11} + \frac{1116267087609373}{21013880110318875} a^{9} - \frac{4816637824276883}{42027760220637750} a^{7} - \frac{1}{2} a^{6} - \frac{439326364230921}{14009253406879250} a^{5} - \frac{1}{2} a^{4} - \frac{8598836759779157}{21013880110318875} a^{3} + \frac{28134392460574}{64658092647135} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{9}$, which has order $9$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 161942.880711 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_4$ (as 16T158):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2\wr C_4$
Character table for $C_2\wr C_4$

Intermediate fields

\(\Q(\sqrt{61}) \), 4.0.226981.1, 4.4.48373.1, 4.0.2950753.1, 8.0.669764866693.1 x2, 8.4.142736774869.1 x2, 8.0.8706943267009.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$61$61.8.6.1$x^{8} - 61 x^{4} + 59536$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
61.8.6.1$x^{8} - 61 x^{4} + 59536$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$