Normalized defining polynomial
\( x^{16} - 4 x^{15} + 14 x^{14} + 32 x^{13} - 232 x^{12} + 312 x^{11} + 1735 x^{10} - 8772 x^{9} + 46695 x^{8} + 180214 x^{7} + 90453 x^{6} + 2452190 x^{5} + 10347492 x^{4} + 3593666 x^{3} + 8936718 x^{2} + 155779206 x + 276981329 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7567771186285806117913600000000=2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} + \frac{5}{19} a^{13} - \frac{6}{19} a^{12} - \frac{5}{19} a^{11} - \frac{1}{19} a^{10} + \frac{1}{19} a^{9} + \frac{4}{19} a^{8} - \frac{4}{19} a^{7} + \frac{1}{19} a^{6} + \frac{2}{19} a^{5} + \frac{4}{19} a^{4} - \frac{6}{19} a^{3} + \frac{6}{19} a^{2} - \frac{6}{19} a + \frac{4}{19}$, $\frac{1}{20789350448212773338114118226846308232507242292186800899} a^{15} - \frac{408063727815069415895942281271670367367078538484669924}{20789350448212773338114118226846308232507242292186800899} a^{14} + \frac{5687672658815643374952234866400015372595978227909838433}{20789350448212773338114118226846308232507242292186800899} a^{13} + \frac{3918965964469229731825080627111149181760878165709219240}{20789350448212773338114118226846308232507242292186800899} a^{12} - \frac{6367313478607516467432842912840174131495578361100650549}{20789350448212773338114118226846308232507242292186800899} a^{11} + \frac{9769269502346253918327418385801565915499007370965327136}{20789350448212773338114118226846308232507242292186800899} a^{10} - \frac{7978524250602588102092205906140524760850001772059300545}{20789350448212773338114118226846308232507242292186800899} a^{9} + \frac{9005113892037487308703695132877875453913522642073663111}{20789350448212773338114118226846308232507242292186800899} a^{8} + \frac{4359220781594064003539045450262782287650700172363815485}{20789350448212773338114118226846308232507242292186800899} a^{7} - \frac{7489313723512496203449369867577984267070685426871598698}{20789350448212773338114118226846308232507242292186800899} a^{6} - \frac{665317748595461963854129823912399358109262672431610013}{20789350448212773338114118226846308232507242292186800899} a^{5} - \frac{733003859423985431127131955156875293819821100197163752}{1889940949837524848919465293349664384773385662926072809} a^{4} + \frac{4536335545474841613872189984675619408222116160033075545}{20789350448212773338114118226846308232507242292186800899} a^{3} + \frac{5129423480775553502093710737155888229527776953268398743}{20789350448212773338114118226846308232507242292186800899} a^{2} - \frac{7570606254497530018410677954323604077064564652937589979}{20789350448212773338114118226846308232507242292186800899} a - \frac{506545886000583690711810122712480429650048013565031737}{20789350448212773338114118226846308232507242292186800899}$
Class group and class number
$C_{2}\times C_{16}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21064583.4527 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.0.11600.1, 4.0.35600.3, 8.0.1065849760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |