Normalized defining polynomial
\( x^{16} - 6 x^{15} + 26 x^{14} - 179 x^{13} + 1233 x^{12} - 5490 x^{11} + 1168 x^{10} + 11629 x^{9} + 194597 x^{8} - 120954 x^{7} - 1006648 x^{6} - 1701847 x^{5} - 6362725 x^{4} + 29579481 x^{3} + 22641411 x^{2} - 81236989 x + 134139983 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(754823847161356593807740633209=13^{14}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{45} a^{14} - \frac{7}{45} a^{13} + \frac{7}{45} a^{12} - \frac{4}{45} a^{11} + \frac{1}{9} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{14}{45} a^{7} - \frac{8}{45} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{8}{45} a^{3} + \frac{1}{3} a^{2} - \frac{7}{45} a - \frac{2}{45}$, $\frac{1}{2674773898556367988763350223959422404729546220500938637265} a^{15} + \frac{5482113701008365107274151061897960302704212315513740472}{2674773898556367988763350223959422404729546220500938637265} a^{14} - \frac{405602445047463515776697903934415099800675025700261354111}{2674773898556367988763350223959422404729546220500938637265} a^{13} + \frac{247827810793233948518925365609541605473459370102493982484}{2674773898556367988763350223959422404729546220500938637265} a^{12} + \frac{350148673024920618782632103032995822766103794168034165234}{2674773898556367988763350223959422404729546220500938637265} a^{11} + \frac{91623828252767903698039610781679209314648942134174813393}{891591299518789329587783407986474134909848740166979545755} a^{10} - \frac{78043121703355583043288176806666324849945194832043795771}{178318259903757865917556681597294826981969748033395909151} a^{9} - \frac{681108475841892505635712134931512083247585459582114884018}{2674773898556367988763350223959422404729546220500938637265} a^{8} + \frac{1020427273634295504339773287373773395171395761773887723431}{2674773898556367988763350223959422404729546220500938637265} a^{7} - \frac{41044761496932648228120985099259691201306966160849269658}{891591299518789329587783407986474134909848740166979545755} a^{6} - \frac{55257282519981079244735537471638439120436298877859901099}{297197099839596443195927802662158044969949580055659848585} a^{5} - \frac{791918224416968120050046422527845104920035485687726872964}{2674773898556367988763350223959422404729546220500938637265} a^{4} + \frac{63238638950030869568629688317969665182107369345784217478}{297197099839596443195927802662158044969949580055659848585} a^{3} + \frac{667659639318185313501558766122164557400337056392151882843}{2674773898556367988763350223959422404729546220500938637265} a^{2} + \frac{237398457808064443475854374810829309144085074271168662262}{534954779711273597752670044791884480945909244100187727453} a + \frac{101074322110384871626732702907515493619905842858301015433}{297197099839596443195927802662158044969949580055659848585}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55915267.1953 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.294435349.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 61 | Data not computed | ||||||