Normalized defining polynomial
\( x^{16} - 8 x^{15} + 14 x^{14} + 42 x^{13} - 163 x^{12} + 68 x^{11} + 358 x^{10} - 459 x^{9} + 3 x^{8} + 58 x^{7} + 583 x^{6} - 1006 x^{5} + 960 x^{4} - 715 x^{3} + 143 x^{2} + 121 x + 121 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(752931165277996622401=11^{8}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1265} a^{12} - \frac{6}{1265} a^{11} + \frac{309}{1265} a^{10} - \frac{45}{253} a^{9} + \frac{277}{1265} a^{8} + \frac{16}{115} a^{7} + \frac{124}{253} a^{6} + \frac{17}{115} a^{5} - \frac{298}{1265} a^{4} + \frac{97}{253} a^{3} - \frac{349}{1265} a^{2} + \frac{8}{115} a - \frac{4}{115}$, $\frac{1}{1265} a^{13} + \frac{273}{1265} a^{11} + \frac{364}{1265} a^{10} + \frac{192}{1265} a^{9} + \frac{573}{1265} a^{8} + \frac{411}{1265} a^{7} + \frac{112}{1265} a^{6} - \frac{441}{1265} a^{5} - \frac{38}{1265} a^{4} + \frac{31}{1265} a^{3} + \frac{524}{1265} a^{2} + \frac{44}{115} a - \frac{24}{115}$, $\frac{1}{37678025} a^{14} - \frac{1}{5382575} a^{13} + \frac{22}{148925} a^{12} - \frac{6661}{7535605} a^{11} + \frac{90013}{489325} a^{10} + \frac{302559}{3425275} a^{9} + \frac{263513}{5382575} a^{8} + \frac{9964698}{37678025} a^{7} + \frac{1069489}{7535605} a^{6} + \frac{2481387}{7535605} a^{5} - \frac{9659102}{37678025} a^{4} + \frac{9705807}{37678025} a^{3} - \frac{7756726}{37678025} a^{2} + \frac{72636}{489325} a - \frac{632804}{3425275}$, $\frac{1}{3353344225} a^{15} + \frac{1}{90630925} a^{14} - \frac{947862}{3353344225} a^{13} + \frac{1105149}{3353344225} a^{12} + \frac{116682771}{3353344225} a^{11} + \frac{1480838288}{3353344225} a^{10} + \frac{1610458582}{3353344225} a^{9} + \frac{66768447}{304849475} a^{8} - \frac{54419538}{3353344225} a^{7} + \frac{12726633}{134133769} a^{6} - \frac{458811242}{3353344225} a^{5} + \frac{824088954}{3353344225} a^{4} + \frac{52998216}{479049175} a^{3} + \frac{284778148}{3353344225} a^{2} + \frac{4076579}{304849475} a - \frac{94174571}{304849475}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5099.43681828 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-407}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-11}, \sqrt{37})\), 4.0.4477.1 x2, 4.2.15059.1 x2, 8.0.27439591201.1, 8.0.741610573.1 x4, 8.2.2494508291.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $37$ | 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |