Normalized defining polynomial
\( x^{16} - 5 x^{15} + 62 x^{14} - 109 x^{13} + 228 x^{12} + 2572 x^{11} - 2929 x^{10} + 71807 x^{9} + 45097 x^{8} - 423717 x^{7} + 6930709 x^{6} - 15527525 x^{5} + 82210004 x^{4} - 119126639 x^{3} + 303331671 x^{2} + 55592455 x + 71056989 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75014108983158875161309828004416=2^{6}\cdot 97^{4}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{14} - \frac{1}{10} a^{13} - \frac{3}{20} a^{12} - \frac{2}{5} a^{11} + \frac{9}{20} a^{10} + \frac{3}{20} a^{9} + \frac{1}{4} a^{8} + \frac{9}{20} a^{7} + \frac{9}{20} a^{6} - \frac{1}{20} a^{5} + \frac{3}{20} a^{4} - \frac{1}{20} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{20}$, $\frac{1}{48428734962534111088456699640995485550894068614597100747685826460} a^{15} - \frac{28547860050212623336572081805365189900770958256909565396785219}{48428734962534111088456699640995485550894068614597100747685826460} a^{14} + \frac{730929951367553121601208333254975578835646569813604312168384567}{9685746992506822217691339928199097110178813722919420149537165292} a^{13} + \frac{1693325717992624609633572250204415607510376085184531746361482733}{16142911654178037029485566546998495183631356204865700249228608820} a^{12} - \frac{4507079972404459191987984978765816412120939999933473839393232617}{16142911654178037029485566546998495183631356204865700249228608820} a^{11} - \frac{547262867992742670245991347515210528719190962658487801955661249}{24214367481267055544228349820497742775447034307298550373842913230} a^{10} - \frac{2378669230585578932312027339823473500055313875909532046736566543}{8071455827089018514742783273499247591815678102432850124614304410} a^{9} - \frac{4388856244421555045195643879312367470719876620129238585605962769}{12107183740633527772114174910248871387723517153649275186921456615} a^{8} - \frac{1330745599405977785335490621608771905724739660688594213707387882}{4035727913544509257371391636749623795907839051216425062307152205} a^{7} - \frac{1199322053117306560654269410402613958831079703082846762632515913}{8071455827089018514742783273499247591815678102432850124614304410} a^{6} + \frac{35266871805700906235672184914812607317986584571872707897882918}{12107183740633527772114174910248871387723517153649275186921456615} a^{5} - \frac{521960211584473304069403942083621349349025748826025357594650141}{12107183740633527772114174910248871387723517153649275186921456615} a^{4} - \frac{1872200691507496827959714100499046497073635674128814982632163987}{9685746992506822217691339928199097110178813722919420149537165292} a^{3} + \frac{4665681231266465263649550043205390106000077875794444557872397786}{12107183740633527772114174910248871387723517153649275186921456615} a^{2} + \frac{13690598801043341734417725260254891235020561453498371761735419079}{48428734962534111088456699640995485550894068614597100747685826460} a - \frac{1387335141348221904096618819573244389864508682782787767170600693}{16142911654178037029485566546998495183631356204865700249228608820}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 689047277.747 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.4.5647294088.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $163$ | 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.12.10.1 | $x^{12} + 266994 x^{6} + 47068604209$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |