Normalized defining polynomial
\( x^{16} - 4 x^{15} - 25 x^{14} - 64 x^{13} + 600 x^{12} + 2070 x^{11} + 1977 x^{10} - 10446 x^{9} + 9097 x^{8} + 52332 x^{7} + 67733 x^{6} - 395902 x^{5} + 134818 x^{4} + 331560 x^{3} + 760059 x^{2} - 1804726 x + 1021031 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(749636144106256000000000000=2^{16}\cdot 5^{12}\cdot 11^{2}\cdot 61^{2}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 61, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{145} a^{14} + \frac{1}{29} a^{13} - \frac{2}{145} a^{12} + \frac{8}{29} a^{11} - \frac{11}{145} a^{10} + \frac{47}{145} a^{9} + \frac{32}{145} a^{8} + \frac{31}{145} a^{7} + \frac{1}{145} a^{6} + \frac{68}{145} a^{5} - \frac{6}{29} a^{4} + \frac{9}{145} a^{3} - \frac{9}{29} a^{2} + \frac{67}{145} a + \frac{5}{29}$, $\frac{1}{54272633909686234601583538560415105715281743155} a^{15} + \frac{164144719478776856939263833894549951832356477}{54272633909686234601583538560415105715281743155} a^{14} - \frac{2616902870628384488882494963056025705230102887}{54272633909686234601583538560415105715281743155} a^{13} - \frac{5062812467437719919031329746652417127634518831}{54272633909686234601583538560415105715281743155} a^{12} + \frac{23819364620656817326352734535300785728160214758}{54272633909686234601583538560415105715281743155} a^{11} + \frac{10420483232955260226116577040089819994547658596}{54272633909686234601583538560415105715281743155} a^{10} + \frac{17650988653161594623069328190437104381957168069}{54272633909686234601583538560415105715281743155} a^{9} - \frac{22676607199169609271399640857830719531805475379}{54272633909686234601583538560415105715281743155} a^{8} + \frac{837692351012162737888937878917032921467297783}{1871470134816766710399432364152245024664887695} a^{7} - \frac{15862832949682940387907835534041569084989715937}{54272633909686234601583538560415105715281743155} a^{6} - \frac{20681104934779296036937731938734394739022491067}{54272633909686234601583538560415105715281743155} a^{5} - \frac{14925619307646447578105705216299380584314091762}{54272633909686234601583538560415105715281743155} a^{4} - \frac{11507706301929322280002226601161695222786270821}{54272633909686234601583538560415105715281743155} a^{3} + \frac{1015957687043074743862504125276309894966134327}{10854526781937246920316707712083021143056348631} a^{2} - \frac{696894996136476855243074964303828247792043845}{10854526781937246920316707712083021143056348631} a + \frac{20665436245263436374126991389800053285082624713}{54272633909686234601583538560415105715281743155}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{238050904697801928043311332239907192}{279135703204150750660046692967762886141005} a^{15} - \frac{1224388610611769548636557591362541124}{279135703204150750660046692967762886141005} a^{14} - \frac{6145027860666103702717404645524361584}{279135703204150750660046692967762886141005} a^{13} - \frac{5120649926369789167444482886727482257}{279135703204150750660046692967762886141005} a^{12} + \frac{197716030223164435403370692675149524888}{279135703204150750660046692967762886141005} a^{11} + \frac{461094523676098251747906041517923312698}{279135703204150750660046692967762886141005} a^{10} - \frac{688929082964230523301560464044837347004}{279135703204150750660046692967762886141005} a^{9} - \frac{6544020928859358223914225095247953123331}{279135703204150750660046692967762886141005} a^{8} - \frac{2148509293178320394556107387632838000432}{279135703204150750660046692967762886141005} a^{7} + \frac{14012344942750997344020784062598689324312}{279135703204150750660046692967762886141005} a^{6} - \frac{3534529750651612762659924583652100120992}{279135703204150750660046692967762886141005} a^{5} - \frac{189589317861950100741597592447140469206547}{279135703204150750660046692967762886141005} a^{4} - \frac{29310288128360380591534191301262783749116}{279135703204150750660046692967762886141005} a^{3} + \frac{311475801482404423667963811446508526351514}{279135703204150750660046692967762886141005} a^{2} + \frac{373204447785130852763859094976120817192332}{279135703204150750660046692967762886141005} a - \frac{136737241866733943974160480358880115792381}{55827140640830150132009338593552577228201} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7589819.6836 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.404000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101 | Data not computed | ||||||