Normalized defining polynomial
\( x^{16} - 3 x^{15} + 13 x^{14} - 27 x^{13} + 38 x^{12} - 33 x^{11} - 56 x^{10} + 189 x^{9} - 122 x^{8} - 33 x^{7} + 401 x^{6} - 1140 x^{5} + 1283 x^{4} - 666 x^{3} + 212 x^{2} - 72 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(747961818418212890625=3^{12}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{28} a^{14} + \frac{5}{28} a^{13} - \frac{5}{28} a^{12} - \frac{1}{4} a^{11} + \frac{3}{14} a^{10} + \frac{1}{28} a^{9} + \frac{5}{14} a^{8} + \frac{1}{28} a^{7} - \frac{2}{7} a^{6} - \frac{1}{28} a^{5} + \frac{3}{28} a^{4} + \frac{3}{14} a^{3} + \frac{9}{28} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{3472527646667576} a^{15} + \frac{58843951404083}{3472527646667576} a^{14} + \frac{74570777177673}{496075378095368} a^{13} - \frac{25096460486949}{3472527646667576} a^{12} - \frac{22250976339950}{434065955833447} a^{11} - \frac{39470334463627}{496075378095368} a^{10} - \frac{89519016368773}{1736263823333788} a^{9} - \frac{202733537841467}{3472527646667576} a^{8} - \frac{7347936774387}{124018844523842} a^{7} + \frac{447064853328399}{3472527646667576} a^{6} - \frac{1321375654588197}{3472527646667576} a^{5} + \frac{620291184879255}{1736263823333788} a^{4} + \frac{730753878793079}{3472527646667576} a^{3} - \frac{8245244365549}{434065955833447} a^{2} - \frac{158453254896142}{434065955833447} a - \frac{170184754204933}{434065955833447}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{40165837097}{63836749208} a^{15} - \frac{101061112295}{63836749208} a^{14} + \frac{471648669765}{63836749208} a^{13} - \frac{853512625195}{63836749208} a^{12} + \frac{548165781515}{31918374604} a^{11} - \frac{774112506061}{63836749208} a^{10} - \frac{663523598565}{15959187302} a^{9} + \frac{6316814502665}{63836749208} a^{8} - \frac{866696337915}{31918374604} a^{7} - \frac{2329395373485}{63836749208} a^{6} + \frac{14941470194621}{63836749208} a^{5} - \frac{9632725890805}{15959187302} a^{4} + \frac{32290464627175}{63836749208} a^{3} - \frac{5028972336715}{31918374604} a^{2} + \frac{390884311990}{7979593651} a - \frac{149016562091}{7979593651} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9204.08316001 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_4$ (as 16T19):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4 \times D_4$ |
| Character table for $C_4 \times D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), 4.4.6125.1, 4.0.55125.1, 4.0.189.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 4.0.4725.1, 8.0.22325625.1, 8.0.558140625.1, 8.0.3038765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |