Normalized defining polynomial
\( x^{16} + 70 x^{14} - 4 x^{13} + 2168 x^{12} - 424 x^{11} + 37270 x^{10} - 19988 x^{9} + 363790 x^{8} - 431008 x^{7} + 1914202 x^{6} - 4225052 x^{5} + 5723512 x^{4} - 16426168 x^{3} + 17099594 x^{2} - 16351756 x + 29319889 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7478711585794844262400000000=2^{32}\cdot 5^{8}\cdot 13^{6}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} + \frac{1}{8} a^{2}$, $\frac{1}{35710475167682519671303728064985653712946808} a^{15} - \frac{987692333420228283224389573491994390625889}{17855237583841259835651864032492826856473404} a^{14} + \frac{645472778817202346191767196699655886492937}{35710475167682519671303728064985653712946808} a^{13} + \frac{1593542589590867603734849635919828077764935}{35710475167682519671303728064985653712946808} a^{12} - \frac{4403580156845525259040863005452579168841997}{35710475167682519671303728064985653712946808} a^{11} + \frac{466705276669917383847581264177117146381949}{4463809395960314958912966008123206714118351} a^{10} - \frac{4267747828737377987199725362667376883902821}{35710475167682519671303728064985653712946808} a^{9} + \frac{2366114710264432132549730144626890179436951}{35710475167682519671303728064985653712946808} a^{8} + \frac{310512887947512741699221665207740823306747}{35710475167682519671303728064985653712946808} a^{7} - \frac{3546274278243854382221754246762682885766461}{17855237583841259835651864032492826856473404} a^{6} + \frac{6213588584859919748924834522576827555384507}{35710475167682519671303728064985653712946808} a^{5} - \frac{4026799083725143294432674036354469141966659}{35710475167682519671303728064985653712946808} a^{4} + \frac{1218504288218535368654380143476270649681249}{35710475167682519671303728064985653712946808} a^{3} - \frac{1741162058644563657879242729925628663423035}{8927618791920629917825932016246413428236702} a^{2} + \frac{12147059524899430313908309930221447596096809}{35710475167682519671303728064985653712946808} a - \frac{2516475598488003542065047916614685112889819}{35710475167682519671303728064985653712946808}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{410}$, which has order $3280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3710.59482488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).C_2^4$ (as 16T205):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $(C_2\times C_4).C_2^4$ |
| Character table for $(C_2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.432640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.8.6.3 | $x^{8} + 65 x^{4} + 1352$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 31 | Data not computed | ||||||